

Lycée Marie Curie VERSAILLES

Collège François Furet ANTONY

Football, marine marchande, mouvement brownien, haïkus Marc YOR (1949 – 2014)

Il s'était rêvé capitaine, et fut mousse sur un cargo l'été 1967, entra à l'ENSET de Cachan (devenue ENS Paris-Saclay) en 1969, et joua au foot dans le club de la ville (pas dans le club universitaire), participa à un groupe d'alphabétisation des constructeurs de Grigny, fit du mouvement brownien l'objet initial de ses recherches, guida un grand nombre d'étudiants en thèse. Il fut nommé à l'Académie des sciences en 2003.

Chercheur au CNRS puis professeur à l'université, Marc Yor était au travail, et disponible pour d'autres, de 7 heures à 19 heures, mettant à profit ses trajets en transports en commun pour travailler encore (témoin le billet de métro marseillais). Toujours ouvert aux questions, s'en souvenant pour y revenir avec ceux qui les avaient posées, Marc Yor a érit des dizaines d'articles sur les probabilités, sa production est considérable. C'est un mathématicien de renommée mondiale. Il s'est passionné pour la lettre cachetée que Wolfgang Döblin, naturalisé français et soldat en 1940, avait destinée à l'Académie des sciences (« Vingt-cinq ans d'avance »). Il s'était mis à composer des haïkus (poèmes de trois ou quatre vers courts) et retrouvait de l'énergie pour entraîner les jeunes footbaleurs de

Stage ouvert aux collégiennes et collégiens des classes de troisième – 20 et 21 octobre 2025

La Pépinière académique de mathématiques organise, bénévolement, des regroupements d'élèves désignés par leurs établissements. Quatre niveaux sont habituellement concernés: les collégiens de troisième en octobre, les lycéens de première en décembre, les lycéens de terminale présentés au concours général en février et les lycéens de seconde en avril. La Pépinière s'est assurée du concours de partenaires qui hébergent ou ont hébergé nos stages: l'INRIA, l'université de Versailles Saint Quentin en Yvelines, le lycée Camille Pissarro de Pontoise, le collège Paul Fort de Montlhéry, le collège François Furet à Antony, le lycée Vallée de Chevreuse à Gif sur Yvette, le lycée La Bruyère, le lycée Marie Curie et le lycée Hoche de Versailles. Elle a reçu le soutien de l'Institut de hautes études scientifiques de Bures-sur-Yvette.

Les élèves sont désignés et recensés par leurs établissements, parce que l'éducation nationale est responsable des élèves qui lui sont confiés, et donc des projets et des actions auxquels ils sont invités à participer. Une appétence et un répondant minimum sont attendus des élèves.

Le secrétariat opérationnel : Frédérique CHAUVIN, rectorat de Versailles

Saint-Chéron...

Les inspectrices et inspecteurs: Luca AGOSTINO, Karim AKEB, Nicolas FIXOT, Xavier GABILLY, Catherine GUFFLET, Catherine HUET, Éric LARZILLIÈRE, Nicolas RAMBEAUD, Jean-François REMETTER, Charles SEVA, Christine WEILL et les retraités Anne ALLARD, Pierre MICHALAK, Évelyne ROUDNEFF.

Les intervenants professeurs: Christophe DEGUIL (Lycée Notre Dame, SAINT GERMAIN EN LAYE), Rémi NIGUES (ancien professeur au collège Auguste Renoir, ASNIERES SUR SEINE), Pierre MONTPERRUS (Lycée Jeanne d'Albret, SAINT GERMAIN EN LAYE), Sébastien MOULIN (Lycée Jules Ferry, VERSAILLES), Tony PAQUET (collège Magellan, CHANTELOUP LES VIGNES).

Professeurs accompagnants : Frédérique CLIN (collège Martin Luther King, BUC), Florian HOUDAYER (collège Saint Exupéry, VELIZY), Sabrina KHAYAT (collège Jean-Baptiste Clément, COLOMBES), Florian LOCTIN (collège Romain Rolland, LE PLESSIS ROBINSON), Marc TETTEKPOÉ (collège Emile Zola, IGNY), Khalid ZAOUI (collège Albert Camus, BOIS-COLOMBES)

Emploi du temps Lundi 20 octobre 2025

Antony		Versailles					
		Groupe 1		Groupe 2		Groupe 3	
10.00	Accueil	10.00	Accueil				
10.10	Exposé	10.10	Nombres RN		Logique, dénombrement, probabilités CD	Calcul littéral, Equations SM	
matin	Calcul littéral, équations CS	12.10			Repas		
Repas Après - midi	Logique, dénombrement, probabilités EL	13.00 15.00	Géométrie PM		Calcul littéral, équations SM	Logique, dénombrement, probabilités TP	
Après - midi	Films	15.10			Exposé : le nombre - + Films	π	

Mardi 21 octobre 2025

Antony		Versailles					
		Groupe 1		Groupe 2		Groupe 3	
10.00	Accueil	10.00	Accueil				
10.10	Géométrie NF	10.10	Logique, dénombrement, probabilités CD		Géométrie PM	Nombres RN	
12.10	Repas	12.10	Repas				
12.45	Nombres XG	13.00 15.00	Calcul littéral, équations CD - RN		Nombres TP	Géométrie PM	
14.30	Quiz	15.10	Quiz				

Nombres

Exercice 1 – Histoire de factorielle

Soit n un entier naturel non nul.

On appelle « factorielle n » le nombre noté n! défini par $n! = n \times (n-1) \times ... \times 2 \times 1$

Par exemple $4! = 4 \times 3 \times 2 \times 1 = 24$.

Déterminer l'entier n tel que $n! = 3! \times 5! \times 7!$

Exercice 2 - Encore un bug

Une machine à imprimer numérote un par un des billets pour un spectacle. En raison d'un dysfonctionnement, chaque numéro multiple de 3 a été imprimé deux fois. Au total, la machine a imprimé 3 852 chiffres. Combien de billets faut-il retirer de la vente ?

Exercice 3 - Quatuors

Quatre nombres premiers distincts ont pour somme 50. Quels peuvent être ces quatre nombres?

Exercice 4 - Optimisation

Les côtés d'un rectangle sont des entiers naturels non nuls. Son périmètre P est un multiple de 7 et son aire A est un multiple de 9.

Quelle est la plus petite valeur possible de P?

Exercice 5

Déterminer le nombre de rectangles différents ayant des côtés de longueurs entières et une aire égale à 2 025.

Exercice 6

Pour tout entier positif de quatre chiffres noté $N = \overline{a \ bcd}$, on considère le nombre $N' = \overline{d \ cba}$. Déterminer N tel que N' soit aussi un nombre de quatre chiffres et N' = 4N.

Exercice 7

- **1.** Calculer le produit $P = \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{4}\right) \left(1 + \frac{1}{5}\right) \dots \left(1 + \frac{1}{2024}\right) \left(1 + \frac{1}{2025}\right)$.
- **2.** Calculer la somme $S = -1 + 2 3 + 4 5 + 6 7 + \dots 2023 + 2024 2025$.

Calcul littéral - Équations

Exercice 1

Après avoir peint en rouge un pavé droit en bois à section carrée (ses dimensions sont des **nombres entiers**), on le découpe en dés d'arête de longueur 1. On s'aperçoit alors qu'il y a autant de dés que de faces de dés peintes en rouge. Quelles sont les dimensions de ce pavé ?

Exercice 2

Déterminer les nombres x et y tels que $\frac{x-y}{x+y} = 9$ et $\frac{xy}{x+y} = -60$.

Exercice 3

Les nombres a,b,c et d sont des entiers distincts deux à deux, supérieurs ou égaux à 1, inférieurs ou égaux à 9. On leur associe le nombre $N=\frac{a}{b}+\frac{c}{d}$

Quelle est la plus grande valeur de N inférieure à 1 ?

Exercice 4

Déterminer les dimensions d'un rectangle dont les diagonales mesurent 185 m et dont l'aire vaut 10 032 m².

Exercice 5

Maxime et Lucie doivent se rendre à la ville voisine à une distance de 22,5 km. Ils partagent un vélo et doivent arriver en même temps. Lucie part à vélo à une vitesse de 8 kmh^{-1} . Plus tard, elle laisse le vélo et se met à marcher à une vitesse de 5 kmh^{-1} . Maxime marche d'abord à une vitesse de 4 km h^{-1} , puis en arrivant au vélo, se met à pédaler à une vitesse de 10 kmh^{-1} .

Pendant combien de minutes le vélo a-t-il été laissé de côté ?

Exercice 6

Sentant sa fin arriver, un vieillard appelle ses enfants à son chevet afin de leur partager sa fortune. Il demande au plus vieux de prendre une pièce d'or de son coffre et le dixième du reste. Après que l'aîné s'est servi, le père demande au deuxième plus âgé de ses enfants de prendre deux pièces d'or et le dixième du reste. Il continue ainsi avec le k-ième plus âgé des enfants auquel il demande de prendre k pièces d'or et le dixième du reste.

Le dernier enfant reçoit seulement le reste du coffre.

Si les enfants ont tous reçu la même quantité d'or, alors combien d'enfants avait le vieillard et combien d'or chacun at-il reçu ?

Exercice 7

- **1.** Soit m et n deux entiers naturels. Développer le carré $(m+n+1)^2$.
- **2.** Démontrer qu'il n'existe pas d'entiers naturels m, n, p tels que $(m+n+1)^2 + (n+p+1)^2 = (m+p+1)^2$.
- **3.** En déduire qu'il n'existe pas d'entiers naturels impairs a, b, c tels que $(a + b)^2 + (b + c)^2 = (a + b)^2$.

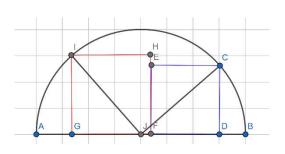
Exercice 8

- **1.** Calculer, pour tout entier naturel n, le nombre $S_n = n^2 (n+1)^2 (n+2)^2 + (n+3)^2$.
- **2.** En déduire la somme S obtenue en alternant, après 1, deux termes négatifs puis deux termes positifs $1^2, -2^2, -3^2, 4^2, 5^2, -6^2, -7^2, 8^2, 9^2, \dots$ pour avoir au total 2 025 termes.

Géométrie

Exercice 1

Soit ABC un triangle rectangle en C et soit H le pied de la hauteur issue de C dans le triangle ABC.


On suppose que CH = 15 et que le périmètre du triangle ABC est égal à 75.

Déterminer la longueur de l'hypoténuse du triangle ABC.

Exercice 2 - Deux carrés dans un demi-disque

Les carrés CDFE et FGIH ont deux côtés à support commun, [DF] et [FG] sont supportés par le diamètre [AB] du demi-disque, [EF] et [FH] sont supportés par une perpendiculaire au diamètre, de plus les points C et I appartienent au demi-cercle. Par ailleurs, les segments joignant le centre J du cercle aux sommets des carrés situés sur le cercle sont perpendiculaires.

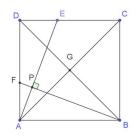

Montrer que la somme des aires des carrés est le carré du rayon du demicercle.

Exercice 3 - L'art du vitrail

À partir d'un carré de côté 6 cm, on a construit 4 cercles dont les côtés du carré sont des diamètres et un cercle de centre le centre du carré et de rayon le côté du carré. On fait ainsi apparaître trois types de zones : zone comprise entre le grand cercle et deux petits (1), zone intersection de deux petits disques (2), demi-disque diminué de l'empreinte de deux petits (3).

Quelles sont les aires des zones de chaque type ?

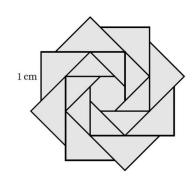
Exercice 4 - Bissectrice


Définition : on appelle bissectrice d'un angle d'un triangle la droite qui passe par le sommet de l'angle et qui partage cet angle en deux angles adjacents de même mesure.

On considère un carré ABCD. Sur le côté [CD] on place un point E.

La perpendiculaire à la droite (AE) passant par B coupe cette droite en P et coupe la droite (AD) en F.

On appelle G le point d'intersection des diagonales du carré.


Montrer que la droite (GP) est la bissectricce de l'angle \widehat{BPE} .

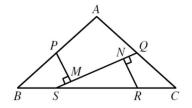
Exercice 5 - Le tourbillon

La figure ci-contre est constituée d'un assemblage de huit rectangles identiques auxquels il manque un des grands côtés. Ces huit rectangles sont encastrés les uns dans les autres, formant ainsi des triangles tous isocèles.

Déterminer l'aire de cette figure sachant que le petit côté de chacun des rectangles mesure 1 cm ?

Exercice 6

Dans la figure ci-contre, le triangle *ABC* est isocèle.

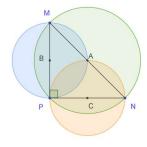

On suppose que AB = AC = 10 et BC = 12.

Les points S et R sont sur le segment [BC] de telle façon que les nombres BS, SR, RC sont dans le ratio 1: 2: 1.

Les points P et Q sont les milieux respectifs des segments [AC] et [BC].

Les points M et N sont les projetés orthogonaux respectivement de P et R sur la droite (SQ).

Déterminer la distance MN.


Exercice 7 - Recouvrements

On donne un triangle rectangle isocèle MNP d'hypoténuse [MN]. Les côtés de l'angle droit mesurent 5.

Les segments [MN], [MP] et [NP] sont les diamètres de trois disques colorés. On note A, B et C leurs milieux respectifs.

On s'intéresse à la partie du plan qui a été colorée au moins deux fois.

Quelle est son aire?

Logique, dénombrement, probabilités

Exercice 1

De combien de façons différentes peut-on obtenir 207€ avec des pièces de 2€ et des billets de 5€?

Exercice 2

Déterminer le nombre de triangles non aplati de périmètre 57 et dont les longueurs des côtés sont des entiers x, y, z tels que x < y < z.

Exercice 3

Trois élèves ont répondu à un questionnaire de trois questions. Voici le tableau rassemblant leurs réponses :

	Question 1	Question 2	Question 3
Elève A	15	36	24
Elève B	20	38	24
Elève C	15	54	24

Sachant que chaque élève a répondu correctement à exactement 2 questions, quelle est la somme des réponses correctes aux trois questions.

Exercice 4

Un tiroir contient 5 paires de chaussettes noires, 3 paires de chaussettes bleues, 2 paires de chaussettes blanches et aucune autre chaussette.

Pour faire sa valise, Maxime choisit successivement et au hasard 3 paires de chaussettes dans le tiroir.

Quelle est la probabilité que ces paires ne soient pas constituées de chaussettes toutes de la même couleur ?

Exercice 5

Au centre-ville de Gaussville, il y a trois édifices de hauteurs différentes : l'Euclide, le Newton et le Galilée.

Un seul des énoncés suivants est vrai :

- 1. Le Newton n'est pas le moins élevé.
- 2. L'Euclide est le plus élevé.
- 3. Le Galilée n'est pas le plus élevé.

Classer les trois édifices dans l'ordre croissant de leur hauteur.

Exercice 6 - Caractère entier

Les nombres x, $\frac{14x+5}{9}$ et $\frac{17x-}{12}$ peuvent-ils être tous les trois entiers ?

Exercice 7 - Au théâtre

Une rangée de 10 sièges peut être accessible par la gauche ou par la droite. Les spectateurs n'arrivant pas les premiers regardent s'il vaut mieux passer par la droite ou par la gauche pour éviter de déranger d'autres spectateurs déjà assis (occupés à mettre leur portable en mode silencieux).

Quelle est la probabilité qu'un spectateur au moins en dérange d'autres ?

Exercice 8 - Salutations

Un groupe de lycéens français a reçu un groupe de lycéens italiens. On s'est fait des politesses et à la fin de la rencontre chacun a salué chacun d'un « Au revoir ! » ou d'un « Arrivederci ! » Au total, 198 « Au revoir ! » et 308 « Arrivederci ! » ont été prononcés.

Combien y avait-il de lycéens français et combien d'italiens ?