PROBABILITÉS

Répétition d'expériences identiques et indépendantes à deux ou trois issues

- « En 3^{ème} et 2^{nde} on s'est intéressé à la succession de deux expériences (éventuellement trois) pas nécessairement identiques. Ces activités ont permis à l'élève de se familiariser avec les arbres de probabilités ... »
- En seconde, on retrouve ce vocabulaire dans le cadre de l'échantillonnage :
 - « Un échantillon de taille *n* est constitué des résultats de *n* répétitions indépendantes de la même expérience. »
- En première, « on s'intéresse surtout à la répétition d'une même expérience aléatoire un certain nombre n de fois ... Ce nombre n peut être grand. »
 - → loi géométrique tronquée
 - → loi binomiale

Doc. ressource première

« Les situations de répétition d'une même expérience aléatoire, reproduite dans des conditions identiques, constituent un **élément fort** du programme de première. »

Sur euler ... ressources 3921, 3922 (exercices d'apprentissage)

Déterminer l'ensemble des valeurs prises par une variable aléatoire associée à la répétition d'expériences identiques indépendantes représentées par un arbre pondéré

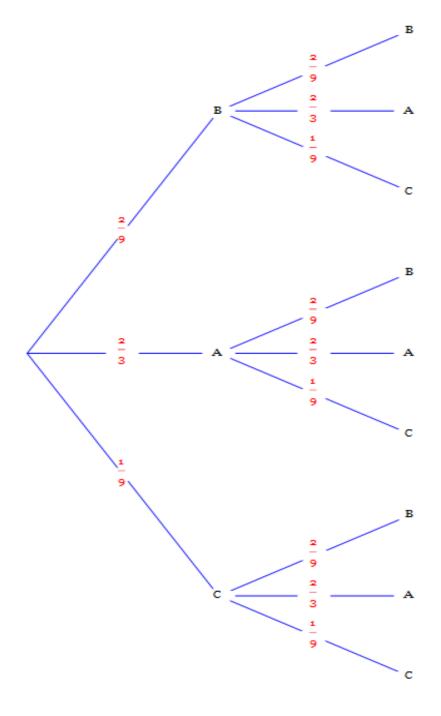
On considère une expérience aléatoire à 3 issues A, B, C, répétée de manière indépendante 2 fois.

Un arbre pondéré résumant la situation est représenté ci-contre. On associe à chaque issue A, B, C un nombre de points respectivement égal à 4 ; o ; 2.

Soit X la variable aléatoire donnant le nombre total de points obtenu à la suite des 2 répétitions de l'expérience.

Déterminez l'ensemble des valeurs prises par X.

L'ensemble S des valeurs prises par X est



exercice d'apprentissage 3919

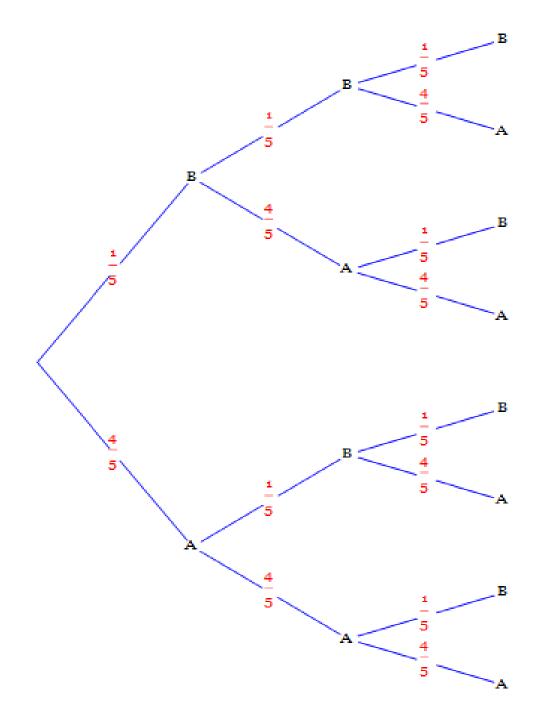
On considère une expérience aléatoire à 2 issues A, B, répétée de manière indépendante 3 fois.

Un arbre pondéré résumant la situation est représenté ci-contre.

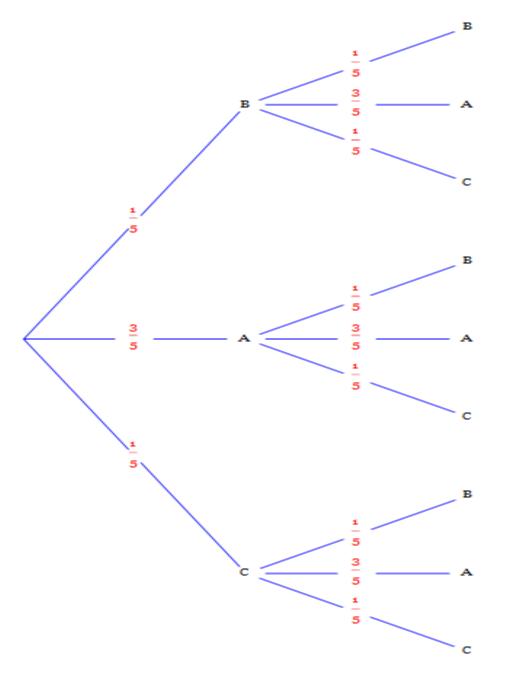
On associe à chaque issue A, B un nombre de points respectivement égal à 0 ; 7. Soit X la variable aléatoire donnant le nombre total de points obtenu à la suite des 3 répétitions de l'expérience.

Déterminez la loi de probabilité de X en complétant le tableau suivant.

x_i	О	7	14	21
$p(X = x_i)$				



exercice d'apprentissage 3918



Loi géométrique tronquée

Définition

Deux paramètres n et p

On effectue *n* épreuves de Bernoulli successives, identiques et indépendantes.

p est la probabilité de succès (0 < p < 1).

X = rang du premier succès ;

X = 0 si pas de succès.

La loi de probabilité de X est définie par :

- pour k entier tel que $1 \le k \le n$, $P(X = k) = p(1 p)^{k-1}$
- $P(X = 0) = (1 p)^n$

Intérêts ...

- Travailler les variables aléatoires discrètes
- Arbre pour lequel les chemins n'ont pas tous la même longueur
- Exploiter un résultat sur les suites géométriques
- Exploiter des résultats relatifs à la dérivation ...

(doc. ressource 1^{ère} p 13 et suivantes)

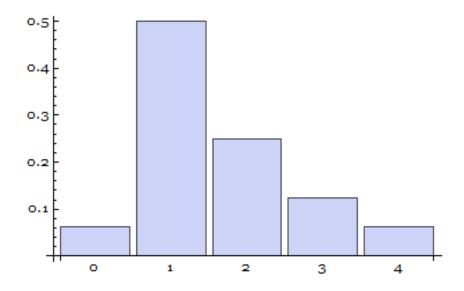
Sur euler ... outil 3773

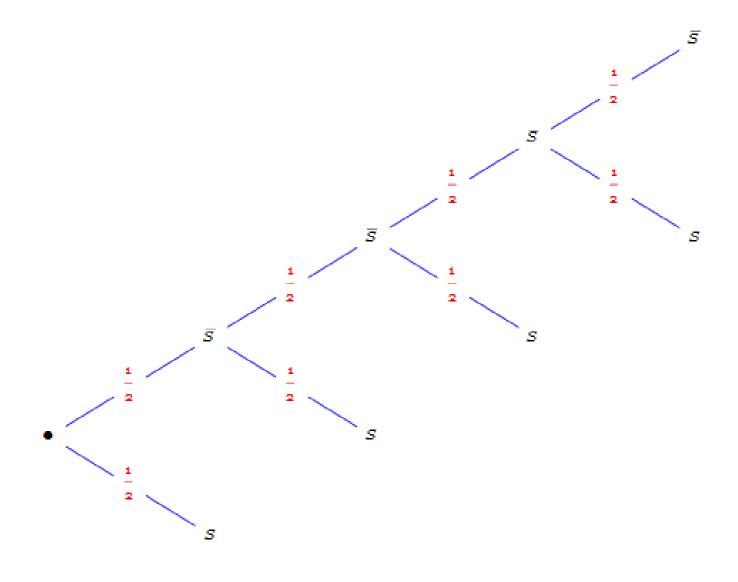
Arbre pondéré et loi de probabilité associés à une loi géométrique tronquée

Indiquez le nombre n d'épreuves ainsi que la probabilité p de succès de la loi géométrique tronquée que vous souhaitez étudier.

La loi géométrique de paramètre $\frac{1}{2}$ tronquée au rang 4 d'une variable aléatoire X est résumée par le tableau suivant.

x_i	o	1	2	3	4
$p(X=x_i)$	1/16	$\frac{1}{2}$	$\frac{1}{4}$	1/8	1/16





exercice d'apprentissage 4016

Déterminer la loi de probabilité d'une variable aléatoire suivant une loi géométrique tronquée de paramètres donnés

Soit X une variable aléatoire suivant la loi géométrique de paramètre $\frac{4}{5}$ tronquée au rang 3.

Déterminez la loi de probabilité de X.

x_i	o	1	2	3
$p(X = x_i)$				

La loi de probabilité de X est résumée par le tableau suivant.

x_i	О	1	2	3
$p(X = x_i)$	$\frac{1}{125}$	<u>4</u> 5	4 25	$\frac{4}{125}$

Voir aussi la définition dans le lexique.

On vérifie qu'il s'agit bien d'une loi de probabilité en calculant la somme des probabilités ; le calcul utilise la formule sur la somme de termes consécutifs d'une suite géométrique :

$$(1-p)^n + \sum_{k=1}^n (1-p)^{k-1} p = (1-p)^n + p \sum_{k=0}^{n-1} (1-p)^k$$

$$(1-p)^n + p\frac{1-(1-p)^n}{1-(1-p)} = 1$$

Espérance de la loi géométrique tronquée

$$E = \sum_{k=1}^{n} k (1-p)^{k-1} p = p \sum_{k=1}^{n} k (1-p)^{k-1}$$

On considère la fonction f définie par :

$$f(x) = 1 + x + x^{2} + \dots + x^{n} = \sum_{k=0}^{n} x^{k}$$
$$f'(x) = \sum_{k=1}^{n} k x^{k-1}$$

Donc:
$$E = p f'(1-p)$$

• Or

$$f(x) = \frac{1 - x^{n+1}}{1 - x} \quad \text{si} \quad x \neq 1$$

• Donc:
$$f'(x) = \frac{-(n+1)x^n(1-x) + 1 - x^{n+1}}{(1-x)^2}$$

• D'où:
$$E = \frac{1}{p} [1 - (1 + np)(1 - p)^n]$$

(voir doc ressource page 19)

Prolongement possible : limite quand $n \to +\infty$ (conjecture avec un outil numérique ou graphique ...)

Loi binomiale

Loi binomiale B(n; p)

= loi de la variable aléatoire égale au nombre de succès dans la répétition de *n* épreuves de Bernoulli identiques et indépendantes de paramètre *p*. (sauf STMG)

« La représentation à l'aide d'un arbre est privilégiée. »

« Reconnaître des situations relevant de la loi binomiale. »

« Représenter graphiquement la loi binomiale. » (diagramme en bâtons)

Calculer une probabilité dans le cadre de la loi binomiale ...

- en ES/L et S coefficients binomiaux
 (ⁿ_k) est le nombre de chemins qui réalisent exactement k succès.
 - (pas de formule avec les factorielles, calculatrice ou tableur, triangle de Pascal en S)
 - La probabilité de chacun de ces chemins est $p^k (1-p)^{n-k}$.
- En STI2D, STL, STMG
 calcul des probabilités avec calculatrice ou
 tableur

Espérance, variance

- Espérance
 - Formule conjecturée puis admise
 - (en STMG : peut être conjecturée ou illustrée à l'aide de simulations)
 - Utiliser l'espérance dans des contextes variés (ES/L et S)
 - Interpréter l'espérance comme valeur moyenne dans le cas d'un grand nombre de répétitions (STI2D/STL, STMG)
- Variance en S et STI2D/STL

Loi binomiale sur euler

- 11 exercices d'apprentissage
- 2 outils
- 2 QCM

ressources contenant les descripteurs :	loi binomiale	•	et 🔻	•	_
---	---------------	---	------	---	---

rechercher

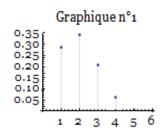
Nombre de fiches disponibles : 15

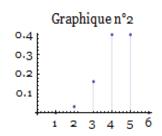
1920	Calculer l'espérance mathématique d'une loi binomiale	Apprentissage
1921	Calculer la variance d'une loi binomiale	Apprentissage
1922	Calculer la probabilité d'un événement élémentaire associé à une variable aléatoire suivant une loi ² binomiale	Apprentissage
1934	Calculer la probabilité d'un événement associé à une variable aléatoire suivant une loi binomiale	Apprentissage
3533	Déterminer le nombre d'épreuves de Bernoulli associé à une loi binomiale de probabilité de succès et d'espérance mathématique données	Apprentissage
	Déterminer la probabilité de succès d'une loi binomiale de nombre d'épreuves et d'espérance mathématique donnés	Apprentissage
3536	Déterminer le nombre d'épreuves de Bernoulli associé à une loi binomiale de probabilité de succès et de variance données	Apprentissage
3537	Déterminer la probabilité de succès d'une loi binomiale de nombre d'épreuves et de variance donnés	Apprentissage
3942	Déterminer le nombre de chemins de l'arbre associé à une loi binomiale réalisant un nombre donné de succès pour un nombre donné de répétitions	Apprentissage
3943	Déterminer l'intervalle de fluctuation à 95 % d'une variable aléatoire suivant une loi binomiale de 3 paramètres donnés	Apprentissage
3945	Compléter le tableau donnant la loi de probabilité d'une variable aléatoire suivant une loi binomiale de paramètres donnés	Apprentissage
3521	Arbre pondéré et loi de probabilité associés à une loi binomiale	Outil
3944	Intervalle de fluctuation à 95 % d'une variable aléatoire suivant une loi binomiale	Outil
3780	Associer des représentations graphiques de lois binomiales aux probabilités de succès correspondantes	QСМ
3970	Associer les représentations graphiques de fonctions de répartition aux lois binomiales correspondantes	QCM

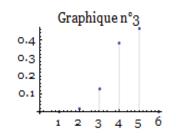
Ressource 3780

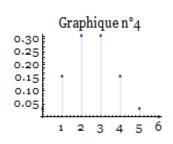
Associer des représentations graphiques de lois binomiales aux probabilités de succès correspondantes

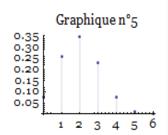
On a représenté ci-dessous cinq lois binomiales.





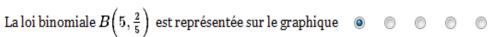






Associez à chaque loi binomiale le graphique correspondant.

La loi binomiale
$$B\Big(5, \frac{3}{8}\Big)$$
 est représentée sur le graphique $\ \odot \ \ \odot \ \ \odot \ \ \odot \ \ \odot$



La loi binomiale
$$B\Big(5,rac{5}{6}\Big)$$
 est représentée sur le graphique $\ \odot \ \ \odot \ \ \odot \ \ \ \odot$

La loi binomiale
$$B\Big(5,rac{6}{7}\Big)$$
 est représentée sur le graphique $\ \odot \ \ \odot \ \ \odot \ \ \odot \ \ \odot$

- A partir d'une représentation graphique, on peut observer l'influence d'une variation de n à p fixé, ou inversement.
- Le diagramme est symétrique si et seulement si p = 0.5.
- La courbe a une « allure symétrique » pour les « grandes binomiales »
 (n ≥25; 0,2
- On peut utiliser le tableur pour conjecturer l'espérance.

Lois à densité

Lois à densité (terminale)

- En S et ES/L : notion de loi à densité à partir d'exemples
- En STI2D et STL : exemples de lois à densité
- En STMG : loi normale

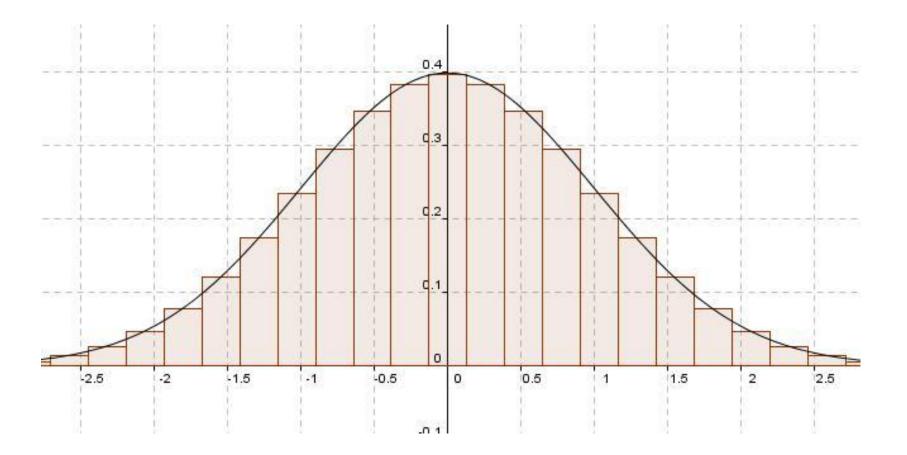
- Loi uniforme sur [a; b]
 (toutes séries sauf STMG)
- Lois exponentielles (S, STI2D, STL)

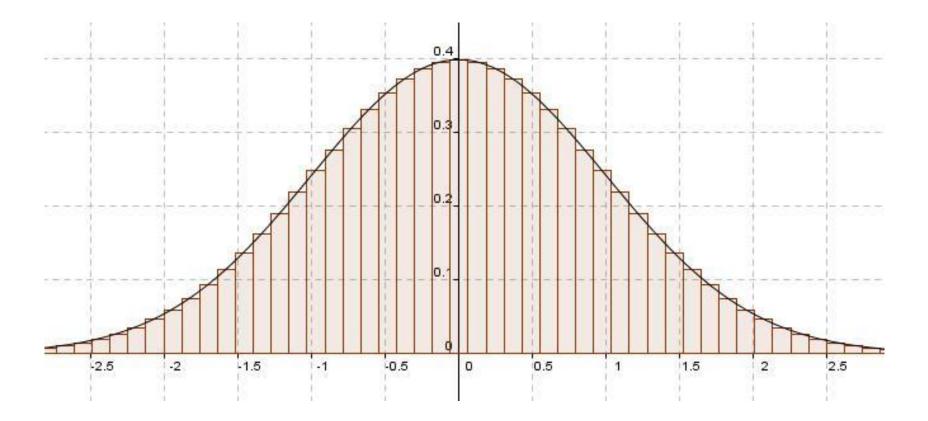
 Espérance de la loi exponentielle :
 connaître et interpréter l'espérance
 en STI2D et STL; démonstration
 « exigible » en S ...

Loi normale

(d'abord centrée réduite en ES/L et S) introduite à partir de la loi binomiale (théorème de Moivre-Laplace) en ES/L, S et STMG; à partir de la loi uniforme en STI2D et STL ...

« on s'appuie sur l'observation à l'aide d'un logiciel ... »





Approximation d'une loi binomiale par une loi normale en STI2D et STL seulement :

« Quand $n \ge 30$, $np \ge 5$, $n(1-p) \ge 5$, il est courant de faire les calculs impliquant une variable binomiale en la remplaçant par une variable suivant une loi normale de mêmes espérance et variance.

Seul le programme de STI2D-STL mentionne cette pratique, qui ne doit donc pas être mise en œuvre dans les autres filières où tous les calculs de probabilités se font à la calculatrice **en utilisant la loi exacte** (au programme), quelle qu'elle soit. » (doc. ressource terminale page 21)