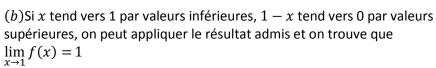
Concours général des lycées. Mathématiques. Terminales ES et L. Rédactions possibles.

PROBLÈME 1

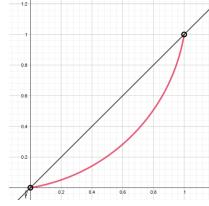
- 1°- Les tirages sont indépendants, on utilise la probabilité produit. Les réponses aux questions (a) et (b) sont donc les mêmes : La probabilité d'obtenir Face – Face – Pile comme celle d'obtenir Face – Face est $\frac{1}{2}$. On peut aussi considérer qu'il y a 8 éventualités, qui donnent 8 événements élémentaires équiprobables.
- 2°- Pour que les calculs suivants aient un sens, il faut précéder chaque phrase de quantificateurs universels. Les enchaînements d'égalités ne sont pas corrects mais font gagner de la place.
- (a) Par mise en facteur : $p_k = q^{k-1} q^k = q^{k-1}(1-q) = pq^{k-1}$

- vraie pour ce k. De $E_k=1+q+q^2+\cdots+q^{k-1}-kq^k$, comme $E_{k+1}=E_k+(k+1)p_k$ on déduit $E_{k+1}=1+q+q^2+\cdots+q^{k-1}-kq^k+(k+1)pq^{k-1}$, et comme p=1-q, on trouve que l'égalité est vraie pour k+1. On conclut que cette propriété est vraie pour tout entier k supérieur ou égal à 3.
- 3°- (a) La suite $n \mapsto q^n$ a pour limite 0, attendu que q < 1. La suite (S_n) a donc pour limite 0.
- (b) On peut écrire pour tout $k: E_k = \frac{1-q^k}{1-q} kq^k$. Sous cette forme, on voit apparaître la somme de deux suites, la première a pour limite $\frac{1}{1-a}$, autrement dit $\frac{1}{n}$, et la seconde a pour limite 0, ce que nous avons admis. D'où le résultat.
- 4°- (a) Comme dans la première question, la probabilité de l'événement $(X_n = k)$ est le produit des probabilités tirer Face aux k-1 premiers tirages et Pile au kème, c'est donc p_k .
- (b) L'événement ($X_n = 0$) correspond à n tirages successifs de Face.
- Sa probabilité est $(1-p)^n = q^n$
- (c) La probabilité que Pile ne sorte pas en n lancers tend vers 0 quand le nombre de lancers tend vers l'infini.
- 5°- (a)L'espérance mathématique de X_n est la somme des produits $P(X_n = k)$ par k. C'est exactement le calcul proposé pour obtenir E_n .
- (b)L'espérance de X_n tend vers $\frac{1}{n}$ lorsque n tend vers l'infini (si la probabilité d'obtenir Pile en un lancer est
- 1/2, l'espérance de la première apparition de Pile dans une série de lancers est 2, si elle est 1/50, l'espérance est 50, mais attention, il s'agit d'une limite, on suppose pouvoir jouer une infinité de coups pour parvenir à ce résultat, qui n'est qu'une espérance...)
- 6°- (a) Calculons $S_n np(1 S_n) = 1 q^n npq^n$ et comme $Q_n = \frac{E_n}{E} = p\left(\frac{1-q^n}{n} nq^n\right)$ le résultat annoncé
- (b) $1-S_n=q^n$, donc $\ln(1-S_n)=n\ln q$, d'où le résultat, et l'égalité suivante obtenue par substitution. (c) La fonction f est définie par $f(x)=x-\frac{p}{\ln q}(1-x)\ln(1-x)$
- 7°- (a) La fonction f est dérivable sur]0, 1[et on a, pour tout x, f'(x) = $1 - \frac{p}{\ln q} \left(-\ln(1-x) - 1 \right)$

Et la fonction dérivée est elle-même dérivable et " $(x) = \frac{-p}{\ln q(1-x)}$. Cette dernière quantité est positive (car lnq < 0). La fonction f est donc convexe. f(0) = 0.



(c) La fonction f étant convexe sur l'intervalle]0,1[, sa représentation graphique est située en dessous de ses cordes, par conséquent en-



dessous de celle qui joint les points de coordonnées (0, 0) et (1, 1). Il y a là un double abus de langage,

puisque la fonction f est définie sur l'intervalle ouvert. On peut procéder à un prolongement par continuité, la fonction prolongée \hat{f} étant égale à la fonction f sur]0,1[et prenant en 0 la valeur 0 et en 1 la valeur 1. 8° - (a) Il suffit pour cela de calculer la dérivée de la fonction proposée. On note cette fonction F. Une primitive G de la fonction f est donc donnée par :

$$G(x) = \frac{x^2}{2} - \frac{p}{\ln q} \frac{(1-x)^2}{2} \left(\frac{1}{2} - \ln(1-x)\right)$$

En dérivant, on obtient :

$$G'(x) = x - \frac{p}{\ln q} \left(-(1-x) \left(\frac{1}{2} - \ln(1-x) \right) + \frac{(1-x)^2}{2} \left(\frac{1}{1-x} \right) \right)$$

qui est le résultat annoncé.

(b)
$$\int_0^A f(x) dx = G(A) - G(0) = \frac{A^2}{2} - \frac{p}{\ln q} \frac{(1-A)^2}{2} \left(\frac{1}{2} - \ln(1-A) \right) - \frac{p}{4\ln q}$$

(c) L'aire située entre la courbe et la première bissectrice est l'aire sous la courbe de la fonction représentative de la différence entre les fonctions $x\mapsto x$ et f. Cette différence est la fonction d définie sur]0,1[par $d(x)=\frac{p}{\ln q}(1-x)\ln(1-x)$. Une primitive nous en est donnée, qui prend en 1 la valeur 0 et en 0 la valeur $-\frac{p}{4\ln q}$ (rappelons que ce nombre est positif).

D'où le résultat proposé pour l'indice de Gini.

PROBLÈME 2

1°- On résout l'équation $x^2-x-1=0$. Pour cela, on l'écrit : $\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=0$, ou encore $\left(x-\frac{1+\sqrt{5}}{2}\right)\left(x-\frac{1-\sqrt{5}}{2}\right)=0$, où on voit que les solutions sont $\frac{1+\sqrt{5}}{2}$ et $\frac{1-\sqrt{5}}{2}$. $\frac{1-\sqrt{5}}{2}$ est inférieure à 0, car $\sqrt{5}$ est supérieur strictement à 1, $\frac{1+\sqrt{5}}{2}$ est supérieur à 1 pour la même raison. 2°- (a) La fonction $x\mapsto P_3(x)$ est dérivable et on a pour tout : $P'_3(x)=3x^2-2x-1$. La factorisation donne $P'_3(x)=3\left(x-\frac{1}{3}\right)^2-\frac{4}{3}$, ou encore $P'_3(x)=3(x-1)\left(x+\frac{1}{3}\right)$. Regardons les variations de la fonction P_3 :

x	$-\frac{1}{3}$		1	
$P'_3(x)$	positif 0	Négatif	0	positif
$P_3(x)$	$-\frac{22}{27}$		> -2	2

La fonction P_3 prend donc des valeurs négatives sur l'intervalle $]-\infty$, 1]. Comme sa limite en $+\infty$ est $+\infty$, on en déduit qu'elle change de signe sur l'intervalle $[1, +\infty[$. L'équation proposée possède une solution réelle supérieure à 1.

(b)On commence par chercher un nombre supérieur à 1 dont l'image par P_3 est positive. On trouve que $P_3(2)=1$. On peut procéder ensuite par dichotomie pour trouver un intervalle de longueur 10^{-3} dont les bornes aient des images de signes différents. L'algorithme ci-contre fournit la valeur 1,8388, centre (ou presque, à la précision demandée) du premier intervalle de longueur inférieure à 10^{-3} dont les bornes ont des images de signes contraires. Les calculs sont reconstitués sur le tableau ci-dessous, réalisé avec un tableur.

$$a = 1, b = 2$$
Tantque $b - a > 10^{-3}$
Si $P_3\left(\frac{a+b}{2}\right) > 0$

$$b \leftarrow \frac{a+b}{2}$$

$$a \leftarrow \frac{a+b}{2}$$
Fin Tantque
Imprimer $x = \frac{a+b}{2}$

а	b	(a+b)/2	P((a+b)/2)
1	2	1,5	-1,375
1,5	2	1,75	-0,453125
1,75	2	1,875	0,201171875
1,75	1,875	1,8125	-0,143310547
1,8125	1,875	1,84375	0,024505615
1,8125	1,84375	1,828125	-0,060497284
1,828125	1,84375	1,8359375	-0,018270969
1,8359375	1,84375	1,83984375	0,00304836
1,8359375	1,83984375	1,837890625	-0,007628523
1,837890625	1,83984375	1,838867188	-0,002294389

3°- Étudions la fonction P_4 . Comme le coefficient du terme de plus haut degré, degré pair, est positif, on peut conclure que $\lim_{\chi \to -\infty} P_4 = +\infty$ et $\lim_{\chi \to +\infty} P_4 = +\infty$. D'autre part, $P_4(0) = -1$ et $P_4(1) = -3$. On peut conclure grâce au théorème des valeurs intermédiaires généralisé aux intervalles ouverts : il y a un zéro de P_4 inférieur à 0 et un autre supérieur à 1. Cela ne prouve pas que ce sont les seuls. Pour régler cette question, on peut étudier les variations de la fonction dérivée de P_4 , en étudiant la fonction dérivée de cette dérivée. Cette étude conduit à voir que P_4 est décroissante sur un intervalle P_4 0, où P_4 0, où P_4 1, on en déduit qu'il y a une racine négative à P_4 1. P_4 2 est croissant mais négatif à partir de P_4 3, mais comme il s'agit d'une fonction polynôme du troisième degré, il existe un réel P_4 1 tel que P_4 2 soit positif sur l'intervalle P_4 5. Sur cet int

4°- (a)On a, pour tout réel x différent de 1: $1 + x + x^2 + \dots + x^{n-1} = \frac{1-x^n}{1-x}$

(b) Pour tout entier n supérieur ou égal à 2 et tout réel x:

$$Q_n(x) = x^n(1-x) + 1 - x^n = (1-x)P_n(x)$$

La nullité de $P_n(x)$ entraîne donc celle de $Q_n(x)$.

(c) La réciproque est fausse. La nullité de $Q_n(x)$ entraîne celle de $P_n(x)$ ou celle de 1-x. Et comme $P_n(1) \neq 0$, ces deux éventualités ne se produisent pas simultanément.

5°- (a) La fonction dérivée de \mathcal{Q}_n est définie par :

$$Q'_n(x) = (n+1)x^n - 2nx^{n-1} = x^{n-1}((n+1)x - 2n)$$

(b) Cette fonction dérivée prend la valeur 0 en $\frac{2n}{n+1}$. On dresse le tableau de variation :

μ τ						
x	$0 \qquad \frac{2n}{n+1}$					
$Q'_n(x)$	Négatif 0	Positif				
$Q_n(x)$	$1 - \left(\frac{2n}{n+1}\right)^n$	→				

En outre, $Q_n(1) = 0$ et $Q_n(2) = 1$

(c) Sur l'intervalle $\left[\frac{2n}{n+1},2\right]$, la fonction Q_n change de signe, et est monotone croissante. Elle prend donc une fois la valeur 0.

(d) Comme dit plus haut, cette solution a_n est la seule solution positive ou nulle de l'équation $P_n(x)=0$, car les solutions de $Q_n(x)=0$ sont celles de $P_n(x)=0$ et 1, or $a_n\neq 1$

6°- Le terme général de cette suite est $2 - \frac{2}{n+1}$. Sa limite est donc 2.

7°- a_n est compris entre $\frac{2n}{n+1}$ et 2, termes généraux de deux suites ayant même limite 2. C'est donc aussi la limite de (a_n) .

8°- (a) On étudie la fonction Q_{2k} sur l'intervalle $]-\infty,0]$. Pour tout x, $Q_{2k}(x)=x^{2k+1}-2x^{2k}+1$. Cette fonction est dérivable et on a pour tout entier k et tout réel négatif x:

 $Q'_{2k}(x) = x^{2k-1}((2k+1)x - 4k)$. La fonction est donc croissante (x est négatif, 2k-1 est impair et (2k+1)x - 4k est négatif).

(b) $Q_{2k}(-1) = -2$

- (c) La fonction Q_{2k} est croissante sur $]-\infty,0]$, prend en -1 la valeur -2 et en 0 la valeur 1, elle prend donc une seule fois la valeur 0 sur l'intervalle]-1,0]. Et comme $Q_{2k}(x)=(1-x)P_{2k}(x)$, on en déduit qu'il y a une seule solution de $P_{2k}(x)=0$ sur ce même intervalle.
- (d) $P_{2k}(x) = 0$ possède donc deux solutions, une comprise entre 1 et 2, l'autre entre -1 et 0. 9°- (a) Calculons

$$Q_{2k+2}(x) - Q_{2k}(x) = x^{2k+3} - 2x^{2k+2} + 1 - x^{2k+1} + 2x^{2k} - 1 = (x-2)(x^2 - 1)x^{2k}$$

Les deux premiers facteurs de ce produit sont négatifs, et la puissance est paire. Le produit est positif.

- (b) $Q_{2k}(b_k) = 0$, donc $Q_{2k+2}(b_k) \ge 0$. b_k est donc à droite de b_{k+1} .
- (c) La suite est donc décroissante.
- 10°-(a) ℓ est inférieur à tous les b_k . Donc, pour tout k, $Q_{2k}(\ell) \leq 0$.
- (b) Les deux premiers termes définissant $Q_{2k}(x)$ tendent vers 0, comme termes de suites géométriques de raison en valeur absolue inférieure à 1. Donc $Q_{2k}(x)$ tend vers 1.
- (c) On a admis l'existence de ℓ , limite de la suite (b_k) . Si ℓ appartient à]-1,0], $Q_{2k}(\ell)$ tend vers 1 lorsque k tend vers l'infini. Or, $Q_{2k}(\ell) \leq 0$. Donc $\ell=-1$.
- 11°- Rappelons que $b_k^{2k+1} 2b_k^{2k} + 1 = 0$. On peut par conséquent écrire $b_k^{2k} = \frac{1}{2-b_k}$.

Sous cette forme, le passage à la limite est légitime, le terme général de la suite (b_k^{2k}) est l'inverse de celui de la suite $(2-b_k)$, qui a pour limite 3. La limite cherchée est donc $\frac{1}{3}$.