

Rapport d'activité et production du laboratoire de Sarcelles

Équipe du laboratoire 2024-2025

Table des matières

Ι	Introduction	2
II	Fonctionnement du laboratoire	2
	II.1 Composition de l'équipe	2
	II.2 Calendrier des rencontres	3
II	ILe projet pédagogique	5
	III.1 Séance « lesson study » en cycle 3	6
	III.1.1 Analyse a priori et scénario	6
	III.1.2 Analyse a posteriori	11
	III.2 Séance « lesson study » en cycle 4	12
IV	Participation à des activités externes	14
\mathbf{v}	Conclusion	15

I Introduction

Ce rapport rend compte de l'organisation du laboratoire de mathématiques de Sarcelles ainsi que du travail pédagogique réalisé par son équipe durant l'année scolaire 2024-2025. Le contexte institutionnel de ce travail s'inscrit dans le cadrage des laboratoires de mathématiques mis en place depuis 2018 à la suite du rapport Villani-Torossian (TOROSSIAN & VILLANI, 2018). Le cadre institutionnel de l'année 2024-2025 précise que chaque équipe doit élaborer une feuille de route qui définit les contours de son agenda et de son projet annuel. Dans la feuille de route de notre laboratoire, les grandes lignes de notre projet pour l'année scolaire 2024-2025 étaient déclinées en trois points :

- 1. Préparation et mise en œuvre de « Lesson Studies Adaptées » du cycle 3 au lycée sur les fractions.
- 2. Participation à la journée académique des laboratoires de mathématiques.
- 3. Visite d'un lieu où les mathématiques prennent vie, par exemple l'IHP, Salon culture et jeux mathématiques, cités des sciences.

Ce rapport est composé de cinq sections. La première section correspond à l'introduction générale. L'organisation et le fonctionnement du laboratoire sont présentés dans la section II. La section III correspond à la présentation et à la description de notre projet pédagogique. Dans cette partie, nous expliquons les motivations de nos choix sur les notions mathématiques qui sont abordées. Les différentes étapes de l'élaboration des activités ainsi que leur mise en œuvre en classe sont également discutées dans cette section. Dans la section IV nous présentons nos participations et nos contributions à des activités organisées par des structures externes. Enfin, la conclusion et les perspectives sont présentées dans la section V.

II Fonctionnement du laboratoire

II.1 Composition de l'équipe

L'équipe du laboratoire est constituée de dix-sept professeurs qui exercent ou qui ont déjà exercé dans des collèges ou lycées publics situés à Sarcelles. Les enseignants exerçant dans le bassin de Sarcelles sont répartis dans six différents établissements. Les membres qui exercent dans des établissements hors de Sarcelles sont des enseignants qui, dans le passé, ont déjà participé aux activités du laboratoire. La figure 1 est une illustration, des six établissements situés à Sarcelles et dont des enseignants de mathématiques sont impliqués dans le laboratoire.

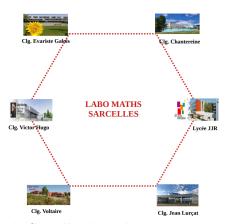


Figure 1: Les établissements de Sarcelles dont des enseignants sont impliqués dans l'équipe du laboratoire.

Nous précisons qu'à Sarcelles, tous les collèges sont classés REP ou REP⁺. La table ci-dessous représente la liste des professeurs qui constituent l'équipe du laboratoire.

Nom et Prénom	Fonction	Établissement
BREVET Jérémy	Enseignant	Clg. Victor Hugo
BOUCHACHIA Mohammed	Enseignant	Clg. Évariste Galois
BOUCHACHIA Saliha	Enseignante	Clg. Voltaire
DIALLO Baba	Enseignant	Clg. Jean Moulin (Arnouville)
EL BOUGARFAOUI Mustapha	Enseignant	Clg. Évariste Galois
HANOUFA Simon	Enseignant	Clg. Jean Lurçat
FRANÇOIS Kévin	Enseignant	Lycée Jean Jacques Rousseau
JACQUOT Clément	Enseignant	Clg. Évariste Galois
KANE Mamoudou Abdoul	Enseignant	Clg. Chantereine
MABONZO Jean Gérard	Enseignant	Clg. Jean Moulin (Arnouville)
NDONG Mamadou	Enseignant	Clg. Évariste Galois
NGUYEN KHAC Benjamin	Enseignant	Lycée Jean Jacques Rousseau
SAADALLAH Rahma	Enseignante	Clg. Philippe Auguste (Gonesse)
SIMO TAPI Théodore	Enseignant	Clg. Victor Hugo
SIMONIN Raphaël	Enseignant	Clg. Victor Hugo
TRIMBORN Gaël	Enseignant	Clg. Chantereine
VALENTE Laetitia	Enseignante	Clg. Victor Hugo

En plus des professeurs du second degré appartenant à l'équipe, cette année, on note la participation régulière de deux coordinatrices de réseaux. Il s'agit d'Aurore KAC, coordinatrice de deux réseaux REP et REP⁺ à Sarcelles sud et de Laetitia Ilponse-Meheut coordinatrice de deux autres réseaux REP à Sarcelles nord.

II.2 Calendrier des rencontres

L'agenda de l'ensemble des rencontres qui ont eu lieu dans le cadre des activités du laboratoire durant l'année scolaire 2024-2025 est présenté dans le tableau de la table 1

Date	Créneau	Ordre du jour	Lieu
08/10/2024	14h-17h	Réunion de rentrée avec la participa-	Clg. Évariste Galois
		tion des pilotes référents des labomaths	
14/11/2024	14h-17h	1er Temps de travail : Préparation	Clg. Victor
		d'une Lesson Study sur les fractions	
16/12/2024	09h-12h	2e Temps de travail : Analyse des res-	Clg. Voltaire
		sources pédagogiques, préparation de	
		scénarios de séances niveau collège	
28/01/2025	14h-17h	3e Temps de travail : Analyse des res-	Lycée JJR
		sources pédagogiques, préparation de	
		scénarios de séances niveau collège	
06/03/2025	14h-17h	4e temps de travail : Semaine des	Clg. Chantereine
		maths. Retour des premières expéri-	
		mentations. Prise en compte des re-	
22 /22 /222		marques afin d'affiner le scénario.	
20/03/2025	08h30-11h00	Expérimentation et observation en classe	Clg. Victor Hugo
26/03/2025	10h30-12h30	Expérimentation et observation en	Clg. Jean Lurçat
		classe	
07/04/2025	10h-12h	Expérimentation et observation en	Ecole élémentaire
		classe	Jean Mermoz 1
			Sarcelles
07/04/2025	10h-12h	Expérimentation et observation en	Ecole élémentaire
		classe	Emile Zola Sarcelles
05/05	09h-12h	Analyse a posteriori des expérimenta-	Clg. Evariste Galois
		tions	
05/05	14h-17h	Formation : Initiation Latex	Clg. Evariste Galois
21/05	09h-16h	Journée des IREMS et des Labomaths	Université Paris Cité
			13e arrondissement
12/06	09h-12h	Sortie	Salon jeux et culture
			mathématiques
12/06	14h-17h	Bilan des activités et perspectives	Clg. Evariste Galois

Table 1

Agenda des rencontres de l'année scolaire 2024-2025

Tous les temps de rencontres peuvent être classés en quatre grands groupes :

- 1. Les temps de rencontres pour élaborer des activités et/ou pour analyser des retours d'expériences.
- 2. Les moments d'expérimentation en classe représentés dans le tableau du calendrier par des lignes grises. Pendant de ces moments, un enseignant du collectif qui a préparé la séance prend le rôle « d'enseignant-expérimentateur ». Une partie du collectif observe

le travail des élèves.

Il est à noter la participation à titre exceptionnel d'une professeure des écoles qui a souhaité, elle aussi, mettre en place la séance sans avoir participé à sa conception.

- 3. Les participations à des activités organisées par des structures externes au laboratoire. Elles sont mises en évidence dans le tableau par des lignes jaunes. Elles correspondent à notre participation à la journée des IREMS et des Labomaths et à une visite du salon culture et jeux mathématiques.
- 4. Une FIL (Formation à Initiative Locale) sur LATEX, un outil identifié comme un besoin spécifique de l'équipe. La spécificité de cette FIL est que le formateur est lui-même un membre de l'équipe du laboratoire.

III Le projet pédagogique

Comme nous l'avons évoqué dans l'introduction, notre projet pédagogique consiste à coconstruire des séances et à les mettre en œuvre en classe selon le principe des « lesson studies ». Les notions mathématiques qui sont travaillées portent sur le sens de la fraction qui, dans les programmes actuels, appartient au thème « nombres et calculs ». Ce choix résulte d'une réflexion collective. En effet, lors du bilan de l'année scolaire 2023-2024, l'incompréhension du sens de la fraction a été identifiée comme une difficulté chez nos élèves. Une difficulté qui peut avoir des conséquences majeures sur l'apprentissage du calcul algébrique ou des registres de représentation du nombre.

L'objectif ici n'est pas de construire une séquence entière sur les fractions pour un niveau donné mais plutôt d'élaborer et de mettre en œuvre collectivement des séances en classe. Cette démarche inspirée du cadre scientifique des « lesson studies » (CLIVAZ, 2015, 2020; LABOMATHS-SARCELLES, 2025; LEWIS & HURD, 2011; MASSELI & HARTMANN, 2020; SHIMIZU, 2014) a déjà été expérimentée par l'équipe du laboratoire l'an dernier. La production qui avait résulté de cette expérimentation a été publiée dans la revue APMEP Ile-de-France (LABOMATHS-SARCELLES, 2025).

Comme chaque année, malgré des difficultés souvent liées à dégager des temps de travail, l'équipe du laboratoire de Sarcelle a pu élaborer et expérimenter deux séances : une pour le cycle 3 et une autre pour le cycle 4. Pour élaborer nos activités et nos scénarios de séance, nous avons formé deux groupes : un groupe chargé de construire une séance dont l'objectif est de donner du sens à la fraction et un autre groupe travaillant sur le sens de la multiplication de deux fractions ou de nombres en écriture fractionnaire. Une fois les activités élaborées, les travaux sont échangés au sein des groupes. Chaque groupe doit analyser la pertinence des activités mathématiques puis porter un regard critique sur l'ensemble des éléments de la séance préparée par l'autre groupe. Ainsi, chaque groupe prend en compte les remarques qu'il juge pertinentes afin d'apporter des améliorations dans sa propre séance.

Les séances sont expérimentées en classe de manière cyclique en suivant le principe des « lesson studies ». Cette démarche s'est déroulée en deux grandes phases :

— Une première phase où des collègues volontaires expérimentent avec leurs propres classe la version initiale de la séance avec ou sans observateurs. Puis, ils feront leurs retours lors de la réunion de travail suivante. La prise en compte de leurs remarques permet d'améliorer les activités, le scénario et la grille d'intervention de la séance.

Dans une deuxième phase, les séances améliorées sont de nouveau testées par des collègues volontaires avec la présence obligatoire d'observateurs. Pendant cette phase, le professeur expérimentateur n'est pas forcément l'enseignant qui a en charge la classe. En fonction des retours du professeur expérimentateur et des observateurs, l'équipe retravaille les activités ainsi que le scénario de chaque séance afin d'obtenir une séance plus robuste.

Ce principe cyclique qui est un des fondements des « lesson studies » permet d'améliorer au fur et à mesure les séances préparées par le collectif.

III.1 Séance « lesson study » en cycle 3

Les activités de la séance du cycle 3 sont inspirées du problème de la bande d'Emel, une activité publiée sur le site de l'académie de Bordeaux. La fiche élève, qui a été élaborée, est présentée en Annexe A. Elle est découpée en quatre parties dépendantes les unes des autres:

- 1. Une première partie (voir partie 1 de l'Annexe A) qui contextualise la situation du problème. Elle doit être projetée au tableau et lue en silence par les élèves pendant un temps défini dans notre scénario.
- 2. Une deuxième partie qui doit être travaillée en groupe. Dans cette partie, les élèves sont mis en activité. L'objectif est qu'à travers la manipulation, ils donnent du sens à la notion de fraction.
- 3. La troisième partie est un prolongement de la deuxième. La démarche utilisée dans la deuxième partie est répétée plusieurs fois sur des segments de longueurs différentes.
- 4. Une quatrième et dernière partie dont l'objectif est de confronter l'élève à un autre registre de représentation du même nombre trouvé dans la partie 1.

La bande utilisée pour mesurer les segments est présentée en Annexe B. La longueur vaut une unité et est notée par 1 U. Nous tenons à préciser que lors de nos expérimentations en classe, nous avions proposé trois segments différents notés par [DA], [DB] et [DC]. Tous les groupes n'avaient donc pas le même segment à mesurer. Cependant, ce choix peut impacter le temps de mise en commun surtout lorsqu'on souhaite montrer toutes les procédures pour chaque cas. Dans l'analyse a priori de la séance, nous nous concentrons sur un seul cas, le segment [DA] dont la longueur vaut $2 \text{ U} + \frac{5}{8} \text{ U}$.

III.1.1 Analyse a priori et scénario.

Connaissances mises en jeu

Pour réussir les tâches, les élèves sont contraints à :

- mesurer en reportant la longueur d'une unité non conventionnelle : la bande unité. Étant donné que la longueur à mesurer ne correspond pas à un nombre entier de reports, ils doivent trouver un moyen de définir la longueur restante qui est plus petite que l'unité;
- utiliser des fractions élémentaires telles que $\frac{1}{2}$; $\frac{3}{4}$; $\frac{5}{8}$ et des écritures additives telles que : $2 + \frac{3}{4}$ pour exprimer des mesures de longueurs obtenues en reportant une bande unité;

- à utiliser les notations et/ou le vocabulaire associé;
- à concevoir qu'une fraction peut s'exprimer de différentes façons et établir ainsi des équivalences telles que : $2 + \frac{5}{8} = \frac{21}{8} = 21 \times \frac{1}{8}$

Place dans la progression ; cycle 3 à partir du CM2. Nous l'avons aussi proposé à des élèves de 5ème.

Quelles démarches possibles d'élèves

Dans cette partie, nous ne discutons que de démarches possibles pour la réalisation de l'activité 1.

- Reporter deux fois la bande sur le segment [DA].
- Se rendre compte que la partie restante est plus petite que la bande unité comme dans le schéma ci-dessous. .
- Prendre l'initiative de plier la bande pour la partager en deux parts égales. Si le reste est inférieur à la moitié, continuer le processus de pliage jusqu'à ce que le reste à mesurer corresponde à un certain nombre de parts de la bande partagée en plusieurs parts égales.
 - Exprimer la partie restante à l'aide d'une fraction avec une notation formalisée ou en langage naturel, par exemple « cinq huitièmes de la bande ». Ecrire le résultat final sous cette forme décomposée : 2 bandes et cinq huitièmes de la bande ou 2 U + $\frac{5}{8}$ U
 - Exprimer toute la longueur de [BD] à l'aide d'une somme de fractions. Par exemple : $\frac{8}{8}$ U + $\frac{8}{8}$ U + $\frac{5}{8}$ U.
 - \bullet Exprimer la longueur de [DB] à l'aide d'un seul nombre dans un registre décimal. Par exemple DB = 2,625 U.
 - Exprimer la longueur de [DB] à l'aide d'un nombre dans une forme décomposée. Par exemple DA = $2~\mathrm{U} + 0.625~\mathrm{U}$.

Des tentatives, d'exprimer la longueur du segment [DA] à l'aide d'une écriture décimale, sont très probables. Car chez nos élèves, le réflexe de recourir à un nombre décimal pour exprimer une longueur non entière par rapport à l'unité de mesure semble être plus naturel que l'utilisation d'une fraction.

Des erreurs possibles

— Après avoir reporté deux fois la bande sur le segment [BD], l'élève, à vue d'œil, assimile le reste à la moitié de la bande ou aux trois quarts de la bande.

- Mauvais pliage de la bande entraînant un partage en parts inégales.
- Partage de la bande qu'en deux parts égales et estimer la partie restante par $\frac{1}{2}$. Cette erreur est probable car, pour certains élèves, $\frac{1}{8}$ est négligeable par rapport à $\frac{1}{2}$. De plus, $\frac{5}{8} = \frac{1}{2} + \frac{1}{8}$.
- Partage de la bande qu'en quatre parts égales et estimer la partie restante par $\frac{3}{4}$. Cette erreur est probable car, pour certains élèves, $\frac{1}{8}$ peut paraître négligeable par rapport à $\frac{1}{4}$. De plus, $\frac{5}{8} = \frac{3}{4} \frac{1}{8}$.

Les tables 2 et 3 représentent respectivement la grille d'intervention et le scénario de la séance du cycle 3 et dont la fiche élève est présentée en Annexe A.

La grille d'intervention construite à partir du scénario (voir table 3).

phase n°	déclencheur	Intervention
2	C'est quoi un tasseau?	expliquer le tasseau, sa fonction en faisant référence au contexte de l'exercice. On peut prévoir une petite réglette pour illustrer.
3	C'est quoi le saut en longueur? ou je ne comprends pas de quoi s'agit-il?	Montrer une image ou un extrait de vidéo d'un athlète qui effectue un saut en lon- gueur.
4	On ne connaît pas la mesure de la bande	La bande représente notre unité de mesure. Ce n'est pas une unité conventionnelle et on n'a pas besoin de connaître sa mesure. Il faut juste exprimer la longueur [DA] par rapport à la bande.
4	L'élève ne prend pas l'initiative de plier la bande	Lui faire savoir qu'il a le droit de plier la bande si nécessaire.
2	L'élève confond le nombre de pliages avec le nombre de parts.	Recompter le nombre de parts avec lui.
4	L'élève donne une valeur approximative de type 2 U+ $\frac{1}{2}$ U ou 2,5 U	Lui demander de montrer comment il a obtenu ce résultat. Lui demander de montrer sur la bande ce que représente $\frac{1}{2}$ U ou 0,5 U.
4	L'élève utilise une écriture décimale exacte (2,625 U)	Valider sa réponse en lui demandant de trouver une écriture équivalente.

Table 2: Grille d'intervention de la séance pour le cycle 3 (voir fiche élève en Annexe A)

L'activité 2 est un prolongement de l'activité 1. Les élèves doivent mesurer plusieurs segments et exprimer leurs longueurs à l'aide de fractions. Les élèves qui s'obstinent dans

l'écriture décimale sont contraints à utiliser la fraction en raison de mesures nécessitant l'utilisation du tiers. Quant à l'activité 3, elle vise la reconnaissance d'écritures équivalentes.

Dans l'activité 2,

- Le segment n°1 mesure $2 U + \frac{1}{4} U = 2 U + \frac{2}{8} U$.
- Le segment n°2 mesure $2 U + \frac{1}{8} U$.
- Le segment n°3 mesure 2 U + $\frac{1}{8}$ U.
- Le segment n°3 mesure 2 U + $\frac{3}{8}$ U.
- Le segment n°5 mesure $1 \text{ U} + \frac{5}{8} \text{ U}$.
- Le segment n°6 mesure $1 \text{ U} + \frac{2}{3} \text{ U}$.

Le scénario de la séance

phase n°	durée	nom phase	élève	Prof
1	5 min	Présentation de l'activité	écoute	présente l'activité, les objectifs et les attendus (travail à rendre), projette au tableau la situation initiale
2	5 min	Situation initiale	lit en silence la si- tuation initiale	A la fin, il demande à un volontaire de lire à haute voix puis échange rapidement avec la classe sur la compréhension du contexte. Si nécessaire, il peut illustrer la situation en s'appuyant sur une ou un extrait de vidéo d'athlètes qui effectuent le saut en longueur. A la fin, il distribue l'activité 1.
3	2 min	vérification de la consigne	lit la consigne. Un élève résume ce qu'il faut faire	Corrige et complète les propos de l'élève.
4	20 min	Activité 1	réalise activité 1	circule dans les groupes pour étayer les procédures, distribue les activités 2 et 3 aux groupes ayant déjà réalisé l'activité 1.
5	10 min	Bilan Activité 1	explique sa dé- marche	Corrige les propos si nécessaire et étaye les procédures. Propose une trace écrite.
6	10 min	synthèse de la séance	décrit ce qu'il a fait et ce qu'il a re- tenu	échange avec la classe, corrige et complète les propos des élèves.
7	3 min	Fin : ramas- sage des pro- ductions		Ramasse les productions avec l'aide des observateurs

Table 3: Scénario de la séance pour le cycle 3 (voir fiche élève en Annexe A)

Nous avons expérimenté trois fois la séance. D'abord, elle a été testée avec classe de 5ème au collège Victor Hugo. Ensuite, nous l'avons ré-expérimentée avec deux classes de CM2; une classe de CM2 de l'école élémentaire Mermoz 1 à Sarcelles sud et une autre de l'école élémentaire Emile Zola à Sarcelles Nord.

III.1.2 Analyse a posteriori. Durant ces trois expérimentations, nous avons remarqué que beaucoup d'élèves ont eu du mal avec la compréhension de la première partie du problème. Cette incompréhension est accentuée par l'utilisation de mots de vocabulaire tels que « tasseau » et « haltères ». Afin de faciliter l'accès à l'exercice, il a été souligné la possibilité d'expliquer le contexte à l'aide de photographies ou d'un extrait vidéo du saut en longueur. Aussi, afin de permettre une meilleure manipulation des bandes unités qui sont relativement petites, une impression en A3 est préconisée notamment pour les élèves de CM2. Pour mesurer le segment, nous avons également remarqué que certains élèves ne faisaient pas des reports mais ils juxtaposaient plusieurs bandes unités. Dans ce cas de figure, nous préconisons la mise à disposition de pâtes à fixe. Cela permettra à ces élèves de mieux poser les bandes unités sans avoir à les tenir en place. L'utilisation de matériel pour modéliser les fractions pouvait aider à la compréhension de la notion pendant les mises en commun. Il est donc conseillé d'utiliser des outils tels que des bandes magnétiques avec les fractions ou les fractions cubes.

La figure 3 représente des productions d'élèves de CM2. Dans l'image qui se trouve à droite, on peut voir le commentaire de l'observateur en rouge. Ces productions montrent qu'une partie non négligeable des élèves observés se raccroche encore aux valeurs décimales. C'est pourquoi, il est nécessaire d'insister à l'oral sur la demande de précision si un résultat exprimé dans le registre décimal est incorrect. Dans le cas d'un résultat correct exprimé avec un nombre décimal, il faut demander son écriture dans un autre registre.

Figure 2: Production d'élèves de CM2

Aussi, certains élèves confondent encore le nombre de pliages avec le nombre de parts. Pour cela, il suffit de recompter le nombre de parts avec eux pour limiter cette difficulté.

La présence de trois segments de longueurs différentes n'a pas beaucoup de pertinence. Un seul cas est donc conservé, c'est celui dont la longueur vaut 2 U + $\frac{5}{8}$ U. Cet exemple offre plusieurs possibilités d'écritures de la longueur notamment dans sa forme décomposée : 2 U + $\frac{5}{8}$ U = 2 U + $\frac{1}{2}$ + $\frac{1}{8}$ U = 2 U + $\frac{3}{4}$ - $\frac{1}{8}$ U. Toutes ces représentations ne seront certainement pas abordées pendant la séance, mais elles peuvent être par la suite une source de réflexion entre l'enseignant de la classe et les élèves.

La figure 3 représente des productions d'élèves de 5ème.

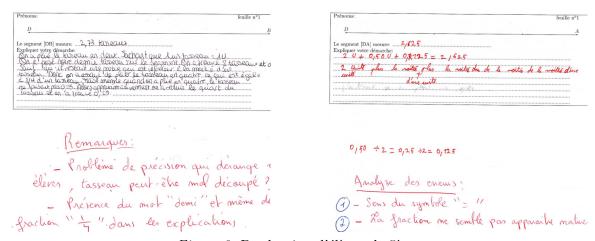


Figure 3: Production d'élèves de 5ème

Pour plus de détails, d'autres productions d'élèves avec des commentaires sont présentées en Annexe C.

III.2 Séance « lesson study » en cycle 4

Les activités qui ont été élaborées pour le cycle 4 sont placées en Annexe C. Cette séance a été expérimentée une fois avec une classe de 4ème au collège Jean Lurçat.

Le but de cette séance est qu'à la fin que les élèves puissent donner des sens à la multiplication de deux fractions. Dans les spécificités françaises, la « lesson study » est souvent pratiquée autour d'une tâche complexe. Ici, nous présentons une « leçon » dont les différentes phases sont identiques à celles d'une séance classique. Son déroulé comprend quatre parties :

- 1. Une première phase questions flash, dans laquelle on réinvestit le calcul d'aire d'un rectangle et le repérage sur un axe gradué. Ces activités sont réalisées en individuel.
- 2. Une partie composée d'activités dont l'objectif de permettre à l'élève de conjecturer la règle de la multiplication de deux fractions.
- 3. Une phase d'institutionnalisation de la propriété.
- 4. Une dernière phase d'appropriation pendant laquelle, l'élève applique la règle dans des cas variés. Si le dernier exercice n'est pas abordé, il peut être donné comme devoir à la maison.

La tables 4 et 5 représentent respectivement le scénario et la grille d'intervention de cette séance.

Phase	Durée	Ce que fait l'élève	Ce que fait le prof
1	5 min	Mise en place	Distribution QF1
2 QF1	5 min	Réflexion	Passage pour aide
3 QF1	2 min	Prise de correction	Correction
4	1 min		Distribution QF2
5 QF2	5 min	Réflexion	Passage pour aide
6 QF2	2 min	Prise de correction	Correction
7	1 min		Distribution ACT
8 ACT	1 min	Lecture à voix haute de l'énoncé	
9 ACT	2 min	ACT 1) coloriage	Passage pour aide
10 ACT	2 min	Prise de correction	Correction + réflexion sur le calcul (combien a-t-on colorié de parts ?)
11 ACT	5 min	ACT 2) séparation, coloriage et calcul	Passage pour aide
12 ACT	2 min	Prise de correction	Correction
13 ACT	2 min	ACT 3) calcul	Passage pour aide
14 ACT	5 min	Prise de correction	Correction et conjecture
15 COURS	6 min	Prise de la propriété	Ecriture du cours (propriété)
16 COURS	2 min	Prise des exemples	Ecriture du cours (exemple)
17	1 min		Distribution EXO
18 EXO	6 min	Recherche des exercices	Gestion de fin de séance

Table 4: Scénario de la séance pour le cycle 4 (voir fiche élève en Annexe C)

Phase	Question	Réponse
2 QF1	On a pas le temps	On veut juste la formule
2 QF1	[fait le calcul quand même]	On veut juste la formule
5 QF2	J'y arrive pas	Compte les graduations / En combien de part est découpée l'unité ?
5 QF2	Pourquoi il n'y a pas de graduation ?	Tu peux tracer des graduations si tu le souhaites
5 QF2	Combien de parts je dois faire ?	Relis les questions précédentes PUIS Regarde le dénominateur de la fraction
9 ACT	[redécoupe les parts]	Qu'est ce qui a été fait juste avant (QF2) ?
9 ACT	[élève coloriant plusieurs rectangles]	Insister sur la consigne (on te demande de colorier combien de rectangle ?)
11 ACT	Pourquoi il n'y a pas de quadrillage?	Tu peux le tracer si tu le souhaites
11 ACT	[élève ayant des parts non égales]	Est ce que tu as deux parts non égales parce que tu n'as pas construit ?
11 ACT	[répétition d'erreurs dans toutes les questions]	Regarde la correction. Comment as-t-on fait ?
13 ACT	On a pas le temps	Tu n'es pas obligé de faire la figure.
13 ACT	Je sais pas faire	Comment a-t-on fait précédemment ? Quel est le lien entre le résultat et les valeurs initales ?
15 COURS	Qu'est ce que c'est un relatif?	Entiers positifs ou négatifs
15 COURS	Qu'est ce que ça veut dire non nul ?	Différent de 0

Table 5: Scénario de la séance pour le cycle 4 (voir fiche élève en Annexe C)

En Annexe E sont présentées des productions d'élèves avec des annotations d'analyse.

IV Participation à des activités externes

Cette année, nous avons participé à deux activités organisées par des structures externes. Il s'agit de « la journée des IREMS et des Labomaths » et du « salon de cultures et jeux mathématiques ».

La journée des IREM d'île de France organisée en partenariat avec le réseau des LaboMaths de l'Académie de Versailles a lieu le mercredi 21 mai 2025. La matinée de la journée était consacrée à un thème d'actualité : l'intelligence artificielle et l'enseignement des sciences. L'après-midi était réservée à des présentations des travaux des groupes de travail des IREMs et des Labomaths de l'académie de Versailles.

À cette occasion, les membres du laboratoire de Sarcelles ont fait une communication orale pour présenter les activités de leur laboratoire et en particulier le projet annuel décrit dans les sections précédentes. Le titre de cette présentation est :

Des séances coconstruites et mises en œuvre par un collectif : un dispositif fondé sur les « Lesson studies ».

Pour plus de détails, le diaporama de la présentation est consultable via ce lien : https://acver.fr/journee-irems-labomaths-sarcelles

Pour nous la plus-value de cette journée est le fait de pouvoir rencontrer des professionnels, des chercheurs, des inspecteurs et d'autres enseignants pour partager nos expériences. Cela permet d'explorer de nouvelles idées et de nouer de nouvelles collaborations. C'était également l'occasion de rencontrer de s'informer sur les tendances actuelles qui façonnent la recherche sur l'enseignement des mathématiques.

C'est aussi dans cette perspective de rencontrer des experts et des professionnels des sciences de l'éducation pour les mathématiques que nous avons visité le salon culture et jeux mathématiques. Cette visite nous a permis de clarifier nos idées sur le type de matériel didactique disponible chez les professionnels et pouvant aider sur la construction du sens de la fraction.

V Conclusion

Notre expérience nous permet d'affirmer que participer à un Labomaths, c'est s'engager dans une dynamique de formation collective. C'est aussi expérimenter, innover en s'appuyant sur les outils de la recherche. Le laboratoire de Sarcelles de par sa stabilité et son dynamisme est devenu un vrai lieu de partage, de mutualisation, de valorisation et de développement de compétences. Pour notre laboratoire, cette année scolaire 2024-2025 a été marquée par plusieurs actions et temps forts. Parmi ces actions nous pouvons citer :

- L'expérimentation des « lesson studies » centrées sur des notions où les élèves présentent des fragilités : le sens de la fraction.
- Une formation en interne avec un formateur qui appartient à l'équipe très intéressante. La formation a permis aux participants de se familiariser avec les principes de base de LATEXqui leur permettent de pouvoir produire des documents de cours et des feuilles d'exercices.
- Une participation et une communication orale à la journée des IREMS et Labomaths. Etaient présents à notre présentation des chercheurs, des inspecteurs et des enseignants. Des échanges qui ont suivi notre présentation ont été très constructifs. À la fin de notre présentation, nous avons été félicités par nos inspecteurs. Nous avons également été invités à Monsieur Renaud CHORAY, Maitre de conférences des universités et chercheur au laboratoire de Didactique André Revuz, à participer à la prochaine rencontre CORFEM dont le thème porte sur les « lesson studies ».
- Une participation régulière de deux coordinatrices de réseaux qui a permis de créer du lien avec le premier degré. Cette collaboration avec les coordinatrices des réseaux a beaucoup facilité nos interventions dans des classes de CM2 pour expérimenter nos séances « lesson studies ».

À propos du projet pédagogique, nous avons ont choisi de travailler le sens de la fraction. Une réflexion approfondie a été nécessaire pour l'élaboration de deux séances. Ces dernières ont été expérimentées collectivement avec les membres de l'équipe. Ce travail collectif et collaboratif contribue beaucoup à notre propre développement professionnel et impacte positivement à nos pratiques enseignantes.

Dans nos perspectives, nous souhaitons reconduire le travail collectif basé sur le principe des « lesson studies ». La continuité du travail sur le sens de fraction est envisagée. Ce travail doit être approfondi et combiné avec la notion de calcul littéral qui est également identifiée comme un sujet d'apprentissage pour lequel les difficultés sont nombreuses. Les points suivants pourraient figurer dans les lignes de notre prochaine feuille de route :

- Retravailler la fraction en expérimentant les ressources disponibles de septembre à décembre afin de les améliorer et de les approfondir.
- Elaborer de nouvelles ressources sur le calcul littéral dans une perspective de les tester l'année suivante. Avec le premier degré, mettre l'accent sur le sens des formules et du signe égal.
- Fixer des rencontres sur au moins deux mercredis pour faciliter la participation des professeurs des écoles.

Références

- CLIVAZ, S. (2015). Les Lesson Study? Kesako? Revue de Mathématiques pour l'école (RMé), 23-26.
- (2020).
- LABOMATHS-SARCELLES, L. (2025). Des élèves face à une tâche complexe une approche par le principe d'une « Lesson study » [https://www.apmep-iledefrance.fr/Des-eleves-face-a-une-tache-complexe [publié le 13-01-2025]].
- Lewis, C., & Hurd, J. (2011). Lesson study step by step: How teacher learning communities improve instruction. Portsmouth. Heinemann.
- MASSELI, B., & HARTMANN, F. (2020). Un dispositif de formation inspiré des lesson studies dans l'académie de Rouen : un avenir dans les laboratoires de mathématiques. , $Rep\`ere-IREM,~n°120,~43-61.$
- Shimizu, Y. (2014). Lesson Study in Mathematics Education. In S. Lerman (Éd.), *Encyclopedia of Mathematics Education* (p. 358-360). Springer Netherlands.
- TOROSSIAN, C., & VILLANI, C. (2018). 21 mesures pour l'enseignement des mathématiques.

Annexe A Activités de la séance pour le cycle 3 Situation initiale à projeter au tableau

Le saut en longueur faisait partie des jeux olympiques plusieurs siècles avant Jésus Christ. Pour sauter, les grecs utilisaient des haltères dans chaque main pour aller plus loin. Pour mesurer les longueurs des sauts, les juges utilisaient un tasseau de bois :

Le tasseau permettait de mesurer des sauts et de classer les sportifs. Par exemple, voilà des sauts d'athlètes qui ont sauté plus de 2 tasseaux. Le départ est au niveau de la ligne du point D et les arrivées sont représentées par les différents points noirs.

Deux juges ont décidé de mesurer avec la plus grande précision possible trois sauts en partant du point de départ D et dont les arrivées sont au niveau des points A, B et C.

Fiche élève

Activité 1 – objectif: mesurer une longueur avec précision sans utiliser une règle graduée

Il vous est distribué le segment [DA] représentant la longueur d'un saut ainsi qu'une bande unité représentant le tasseau.

- 1. En utilisant uniquement la bande unité, mesurer avec la plus grande précision le segment [DA].
- 2. Expliquer votre démarche.

Prénoms:	feuille n°1
\mathcal{D}	A
D.	A
- m 1	
Le segment [DA] mesure:	
Expliquer votre démarche	
Expliquel votre demarche.	
	•••••
	••••••


Activit'e~2-~Mesurer~des~segments~en~cherchant~la~meilleure~pr'ecision

En utilisant votre bande unité, mesurer avec le plus de précision possible tous les segments	feuille n°2
(1)	ı
(*)	
(2)	\dashv
(a)	
(3)	
(4)	
(*)	
(5)	
(6)	

Activité 3 – (Vérifier des écritures équivalentes)

Ecriture équivalentes:	feuille n°3
<i>D</i>	
Le deuxième juge a trouvé que le segment [DA] mesure $\frac{21}{8}$ de la bande. A-t-il raison? Justifier	

 $\label{eq:Annexe} Annexe\ B$ Bande unité à découper par le professeur et à distribuer en plusieurs exemplaires avec l'activité 1

 $\label{eq:Annexe C} \text{Productions d'élèves de la séance cycle 3}$

Activité 1 - objectif: mesurer une longueur sans utiliser une règle graduée

Il vous est distribué un des segments [DA], [DB] ou [DC] de la situation affichée au tableau ainsi que le tasseau la bande unité.

- 1. En utilisant uniquement la bande unité, mesurer votre segment avec la plus grande précision possible.
- 2. Expliquer votre démarche.

Prénoms:	feuille n°1
D	B
Le segment [DB] mesure: 2,73 tasseals	
Expliquer votre démarche	
On a plue le lasseau en deux. Sachant que lan fas	2au - 1U
On a posé notre demie tasseau reile seament on a	Moure 2 tasseaux et a
Dung du it restait une partie qui est inférieur à la 1	moctie d'en
tasseau Danc on a essayé da plib le tasseau en quat	re ce qui est esale
e 1/4 d'un tasseau. Mais même quanden a plie en que	utre, le tasseau
ne joisait pas 0.25. Alors approximativement on a redeux le	guart du
lassour st en a trancé 0, 23.	

Remarques:

- Problème de précision qui dérange rélèves, tasseau peut-être mol découpé?

- Présence du mot 'demi' et même de l'action 't d' dans les explications.

- lien entre le quant et 1

- Addition des fractions dans le régistre du langage qui dernne : 2+1/2 + 1/2 = 2,75.

Activité 1 - objectif: mesurer une longueur sans utiliser une règle graduée

Il vous est distribué un des segments [DA], [DB] ou [DC] de la situation affichée au tableau ainsi que le tasseau la bande unité.

- 1. En utilisant uniquement la bande unité, mesurer votre segment avec la plus grande précision possible.
- 2. Expliquer votre démarche.

A
moiteé d'une

Analyse des enems:

- (1) Sens du symbole "= 11
- 2) La fraction me semble pas apparailse matuel

4> Remediations:

- (a) C est xerran écrit "0,50 ÷ 2 = 0,125" Est ce unai? Non 0,50 ÷ 2 = 0,25. (Puis) 0,25 ÷ 2 = 0,725
- D'La moitre de la moitre de la moitre " E est long à ec

Activité 1 – objectif: mesurer une longueur sans utiliser une règle graduée

Il vous est distribué un des segments [DA], [DB] ou [DC] de la situation affichée au tableau ainsi que le tasseau la bande unité.

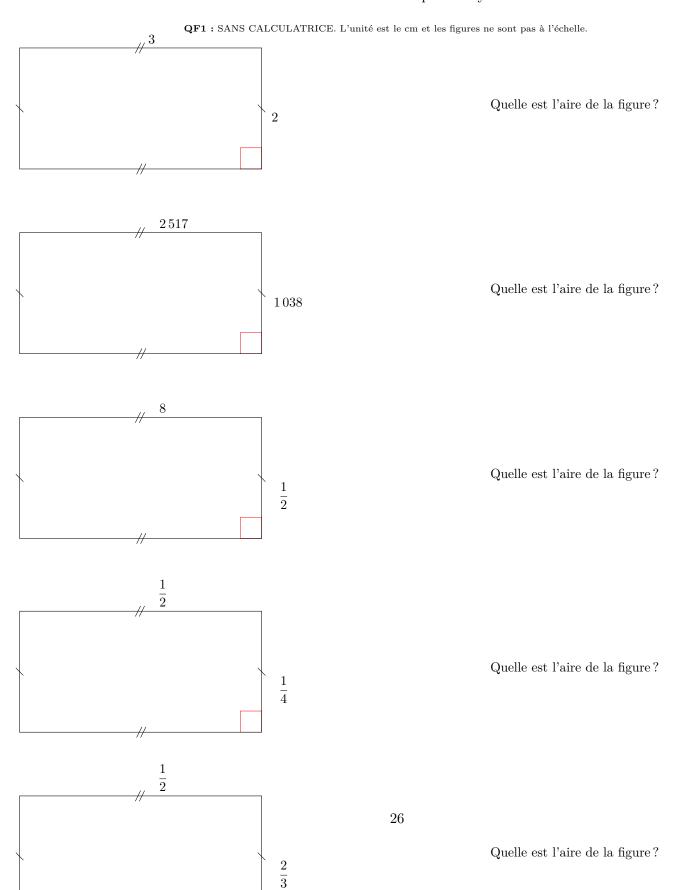
- 1. En utilisant uniquement la bande unité, mesurer votre segment avec la plus grande précision possible.
- 2. Expliquer votre démarche.

Prénoms:			feuille n°1
D	I.	*	Ç
Le segment [DC] mesure:			
Expliquer votre démarche: 2 bandes rentrent entien rentrent Donc mous trous	iement Luand mo Jous finalement	us Wiens la hai 2 + 3	ndeen 8, 3
		••••••	

Activité 1 – objectif: mesurer une longueur sans utiliser une règle graduée

Il vous est distribué un des segments [DA], [DB] ou [DC] de la situation affichée au tableau ainsi que le tasseau la bande unité.

1. En utilisant uniquement la bande unité, mesurer votre segment avec la plus grande précision possible.


2. Expliquer votre démarche.

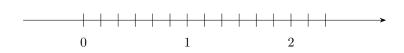
Prénoms:	11	0,625 feuille n°1
D 10	<i>y</i> (A
Le segment [DA] mesure: 2,625 M		
Expliquer votre démarche:	e du manne	at [A
nous aron utilisé	une bande s	coll ont
a utilisé la mantere su en entier e la 3 foir il est	incente. Il sent	ie 2 fors
en entier e la 3 foir il est que n'entre	exo como train	re 0,615h.

Remarques: - Aucunes explications pour le '0,62

Le segment no semble pas avoir été mesuré entièrement.

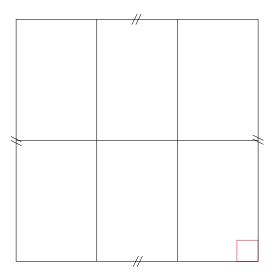
$\label{eq:AnnexeD} \textbf{Activit\'es de la s\'eance pour le cycle 4}$

 $\mathbf{QF2}$

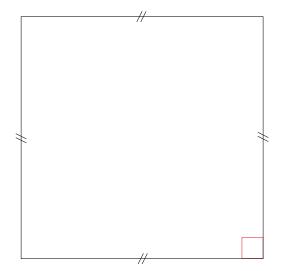

Quelle est l'abscisse du point A?

Quelle est l'abscisse du point B?

Placer $C\left(\frac{3}{5}\right)$.



Placer $D\left(\frac{15}{6}\right)$.



Placer $E\left(\frac{2}{3}\right)$?

ACTIVITÉ

Dans ce carré de côté c, colorier un rectangle dont la longueur est égale à $\frac{2}{3}$ du côte et dont la largeur est égale à $\frac{1}{2}$ du côté. En déduire l'aire du rectangle.

Dans ce carré, calculer l'aire du rectangle de longueur $\frac{3}{4}$ du côté et de largeur $\frac{1}{4}$ du côté.

Conjecturer une règle pour la multiplication de deux nombres en écriture fractionnaire. Calculer $\frac{3}{5} \times \frac{2}{7}$.

COURS

Multiplication de fractions

Propriété 1 – Soient a, b, c, d des nombres entiers relatifs avec b et d non nuls.

On a:

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Exemples

$$\begin{aligned} \frac{-2}{5} \times \frac{3}{7} &= \frac{(-2) \times 3}{5 \times 7} \\ &= \frac{-6}{21} \\ &= \frac{-3}{7} \end{aligned}$$

$$\frac{2}{5} \times 3 = \frac{2}{5} \times \frac{3}{1}$$
$$= \frac{2 \times 3}{5 \times 1}$$
$$= \frac{6}{5}$$

Exercices

Exercice 1-

Effectuer les calculs suivants. On donnera le résultat sous forme simplifiée.

$$1. \quad \frac{1}{5} \times \frac{3}{4}$$

2.
$$\frac{3}{11} \times \frac{5}{8}$$

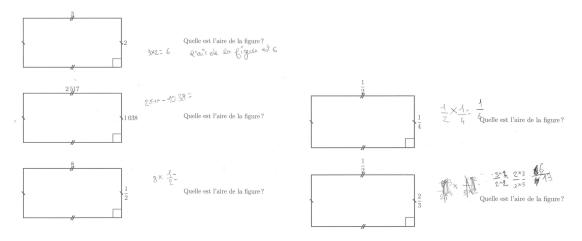
3.
$$\frac{-4}{5} \times \frac{7}{6}$$

4.
$$\frac{2}{3} \times \frac{3}{2}$$

$$5. \quad \frac{-1}{5} \times \frac{2}{-9}$$

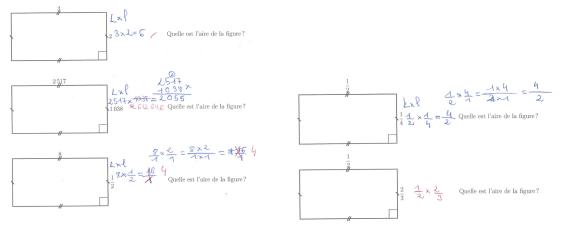
5.
$$\frac{-1}{5} \times \frac{2}{-9}$$
 6. $\frac{5}{7} \times \frac{8}{11} \times \frac{7}{3}$ 7. $\frac{7}{12} \times \frac{18}{5}$

7.
$$\frac{7}{12} \times \frac{18}{5}$$

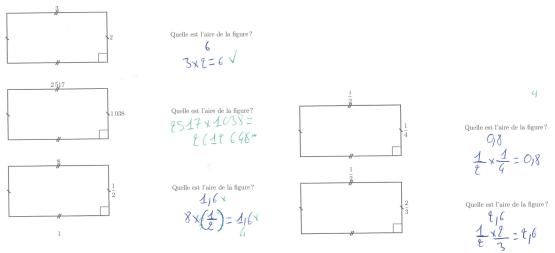

8.
$$5 \times \frac{-9}{2}$$

Exercice 2 -

Dans une classe de quatrième, les deux tiers des élèves font allemand. Parmi eux, les $\frac{3}{5}$ vont participer à un voyage à Berlin.


- 1. Calculer la proportion des élèves qui font allemand et qui vont aller à Berlin.
- 2. Sachant qu'il y a 30 élèves dans cette classe, calculer combien d'élèves germaniques vont aller à Berlin.

$\begin{array}{c} \text{Annexe E} \\ \text{Productions d'élèves de la séance cycle 4} \\ \textbf{Production 1} \end{array}$


L'élève sait appliquer la formule de calcul d'aire et sait exécuter le calcul dans le cas de dimensions entières mais pas pour des dimensions exprimées en écriture fractionnaire. Tentative de réduction au même numérateur et addition de dénominateurs. Confusion dans la propriété de l'addition de deux nombres en écriture fractionnaire.

Production 2

L'élève inverse la deuxième fraction et exécute correctement la multiplication. La raison de pourquoi il inverse l'une des fractions est à chercher.

Production 3

On retrouve des erreurs de conception qui surviennent en cycle 3 et qui consistent à percevoir une fraction comme une écriture décimale dont la partie entière est le numérateur et dont la partie après la virgule est constituée par le dénominateur.