

Pépinière académique de mathématiques

Année 2025-2026 Classe de première Parution lundi 13 octobre

Stage « filé »

Fiche numéro 1

Retour attendu pour le lundi 10 novembre

Dans cette fiche, chaque énoncé d'exercice est précédé de quelques rappels constituant des outils pour traiter l'exercice.

Exercice 1 - Divers types de raisonnement

En mathématiques, on énonce des *définitions* et on établit des *théorèmes*. Tout théorème énonce une vérité qui vaut pour tous les types d'objets concernés. On établit un théorème (ou une propriété) grâce à un *raisonnement* (une *démonstration*). Il existe divers types de raisonnements. Le plus souvent utilisé est le raisonnement déductif (construit à l'aide d'une suite d'implications) mais d'autres types de raisonnement peuvent parfois s'avérer plus appropriés.

L'objectif de cet exercice est de bien appréhender trois types de raisonnement : le raisonnement par contre-exemple, le raisonnement par l'absurde et le raisonnement par disjonction de cas.

1. Contre-exemple

Une affirmation mathématique qui a l'allure d'un théorème n'en est pas un si un des objets dont elle traite apporte la contradiction. On dit qu'on a affaire à un contre-exemple : un exemple d'objet mathématique (nombres, figures géométriques, fonctions...) pour lequel l'affirmation est fausse.

Remarque : un exemple ne suffit pas à prouver qu'une affirmation est vraie mais un contre-exemple suffit à prouver qu'une affirmation est fausse.

Peut-on affirmer que:

- **a.** si x < 2, alors $x^2 < 4$?
- **b.** deux rectangles de même périmètre ont même aire ?
- c. le produit de deux entiers impairs est un entier impair ?

2. Par l'absurde

Utiliser un raisonnement par l'absurde pour démontrer la véracité d'une affirmation consiste à montrer que la négation de cette affirmation est fausse. Dans le cas d'une implication, cela revient à supposer que la conclusion est fausse pour aboutir à une contradiction.

- **a.** *Principe des tiroirs* : Maxime a 100 billes de trois catégories différentes. Il veut les ranger par catégorie dans trois boites. Montrer que l'une des boites contient au moins 34 billes.
- **b.** Montrer que l'équation $3n^3 + 4n^2 6n = 5$ n'a pas de solution entière.

3. Par disjonction des cas

Le raisonnement par disjonction de cas est une forme de raisonnement mathématique qui consiste à décomposer la proposition que l'on cherche à démontrer en un nombre fini de cas (sous-propositions) vérifiés indépendamment, ces cas ne se chevauchant pas et couvrant à eux tous toutes les possibilités (on parle alors de *partition* des cas).

- **a.** Montrer que pour tout entier n, $n^2 + n + 8$ est un nombre pair.
- **b.** Montrer que pour tout nombre réel x, $x < \sqrt{x^2 + 1}$.

Quelques principes de base dans le traitement d'inégalités :

- (1) Pour comparer deux nombres, on peut étudier le signe de leur différence.
- (2) Pour comparer deux nombres positifs, on peut comparer leurs carrés.
- (3) Pour étudier le signe d'une expression, on peut l'écrire sous forme de produit ou de quotient.

Exercice 2 – Inégalités en cascades

- **1.** Démontrer que pour tous nombres réels a et b, $a^2 + b^2 \ge 2ab$ et $(a + b)^2 \le 2(a^2 + b^2)$.
- **2.** On suppose que $a^2 + b^2 = 1$. Démontrer que $-\frac{1}{2} \le ab \le \frac{1}{2}$.
- **3.** Démontrer que pour tous nombres réels a et b strictement positifs, $\frac{a}{b} + \frac{b}{a} \ge 2$.

Exercice 3 – Position relative de courbes

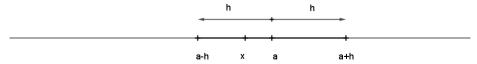
On considère les fonctions f, g et h définies sur]-1, $+\infty[$ par f(x)=1-x, $g(x)=\frac{1}{1+x}$ et $h(x)=1-x+x^2$.

- **1.** Représenter ces trois fonctions dans un repère orthonormal $(0, \vec{\iota}, \vec{j})$ et conjecturer des inégalités vérifiées pour tout réel x de $]-1,+\infty[$ entre f(x),g(x) et h(x).
- **2.** Étudier, suivant les valeurs de x dans $]-1,+\infty[$, le signe de g(x)-f(x) et de h(x)-g(x).

Quelques définitions :

Soit a et x deux nombres réels et soit h un réel strictement positif.

On dit que a est une valeur approchée de x à la précision h (ou « à h près ») lorsque $a - h \le x \le a + h$.



Cela signifie que la distance entre les réels a et x est inférieure ou égale à h.

- On dit que a est une valeur approchée de x par défaut à la précision h (ou « à h près ») lorsque $a \le x \le a + h$.
- On dit que a est une valeur approchée de x par excès à la précision h (ou « à h près ») lorsque $a h \le x \le a$.
- 3. En déduire l'écriture décimale d'une valeur approchée à 10^{-20} de $\frac{1}{1+10^{-10}}$.

Exercice 4 – Transformations d'écriture et résolution d'équations

Définition : Soit n un entier naturel, on appelle fonction polynôme (ou polynôme) de degré n, une fonction P pour laquelle il existe des réels $a_n, a_{n-1}, \dots, a_1, a_0$ tels que $a_n \neq 0$ et pour tout réel $x, P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x^{n-1}$ $a_1 x + a_0$.

Les réels $a_n, a_{n-1}, \dots, a_1, a_0$ sont appelés les coefficients de P.

Propriété : soit P et Q deux fonctions polynômes. P et Q sont égales (c'est-à-dire pour tout réel x, P(x) = Q(x)) si et seulement si P et Q ont le même degré et les mêmes coefficients.

- **1.** Soit *P* le polynôme $P(x) = x^3 + x^2 + x + 1$.
 - **a.** Montrer que pour tout nombre réel x différent de 1, $P(x) = \frac{1-x^4}{1-x}$. **b.** En déduire que l'équation P(x) = 0 n'admet qu'une solution et déterminer cette solution.
- **2.** Soit *P* le polynôme $P(x) = x^3 + x^2 3x + 1$.
 - **a.** Montrer qu'il existe trois nombres réels a, b, c tels que, pour tout réel x, $P(x) = (x-1)(ax^2 + bx + c)$.
 - **b.** Résoudre l'équation P(x) = 0.

Exercice 5 – Mises en équation

Une bonne mise en équation repose sur un choix judicieux de l'inconnue et sur des conditions imposées aux solutions (comme le signe positif pour une distance)

- 1. Soit ABC un triangle rectangle en A tel que AB = 8 et AC = 3. On considère les points D et E situés respectivement sur les segments [AB] et [AC] tels que AE = BD.
 - Existe-t-il une position de ces points D et E telle que l'aire du triangle ADE soit égale à l'aire du quadrilatère BCED?
- **2.** Déterminer le nombre entier N à deux chiffres tel que :
 - la somme de ses chiffres est égale à 13;
 - si on ajoute 34 au produit de ses chiffres, on obtient le nombre « renversé » (mêmes chiffres mais avec des positions échangées).

Exercice 6 – Un peu de calcul vectoriel

Le calcul vectoriel est un outil puissant qui permet notamment de caractériser certaines configurations :

- Le point I est le milieu du segment [AB] si et seulement si $\overrightarrow{AI} = \overrightarrow{IB}$.
- Le point I est le milieu du segment [AB] si et seulement si, pour tout point M du plan, $\overrightarrow{MI} = \frac{1}{2} (\overrightarrow{MA} + \overrightarrow{MB})$
- Le quadrilatère MNPQ est un parallélogramme si et seulement si $\overline{MN} = \overline{QP}$.
- Trois points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{BC} sont colinéaires.

La relation de Chasles permet de travailler sur les égalités vectorielles.

Dans tout exercice de géométrie, on commence par faire une figure.

Soit \overrightarrow{ABC} un triangle. On considère les points M et N définis par $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BC}$ et $\overrightarrow{AN} = 2\overrightarrow{AB} + \overrightarrow{AC}$. Les points P et Q désignent les milieux respectifs des segments [MN] et [MC].

- 1. Démontrer que les points A, M et N sont alignés.
- **2.** Déterminer la nature du quadrilatère ABPQ.