

Language: French

Day: **2**

Mardi 19 juillet 2011

Problème 4. Soit n un entier strictement positif. On dispose d'une balance à deux plateaux et de n poids, de masses respectives $2^0, 2^1, \ldots, 2^{n-1}$.

On doit placer, l'un après l'autre, chacun des n poids sur la balance de telle sorte que le plateau de droite ne soit jamais plus lourd que le plateau de gauche; dans ce but, à chaque étape, on doit choisir un poids qui n'est pas déjà sur la balance et le placer soit sur le plateau de gauche, soit sur le plateau de droite; on continue ainsi jusqu'à ce que tous les poids soient placés. Déterminer le nombre de façons de procéder.

Problème 5. On note \mathbb{Z} l'ensemble des entiers et \mathbb{N}^* l'ensemble des entiers strictement positifs. Soit f une fonction de \mathbb{Z} dans \mathbb{N}^* . On suppose que, quels que soient les entiers m, n, la différence f(m) - f(n) est divisible par f(m - n).

Quels que soient les entiers m, n vérifiant $f(m) \leq f(n)$, montrer que f(n) est divisible par f(m).

Problème 6. Soit ABC un triangle dont les angles sont aigus et soit Γ son cercle circonscrit. Soit ℓ une droite tangente à Γ . Soit ℓ_a , ℓ_b , ℓ_c les droites symétriques de ℓ par rapport respectivement aux droites (BC), (CA), (AB).

Montrer que le cercle circonscrit au triangle déterminé par les droites ℓ_a , ℓ_b , ℓ_c est tangent à Γ .

Language: French

Durée: 4 heures et 30 minutes

Chaque problème vaut 7 points