DES CONTENUS SOLIDES

Rentrée des professeurs stagiaires Août 2014

Des définitions et des théorèmes quantifiés

Fonction affine

Ce n'est pas une « fonction de la forme f(x) = ax + b ».

Définition : on dit qu'une fonction f est affine lorsqu'il existe deux nombres a et b tels que pour tout nombre x, f(x) = ax + b.

Indispensable pour montrer que la fonction f définie par f(x) = 3(x + 1) + 7(2x + 4) est affine.

La fonction carré est de la forme f(x) = ax + b en prenant a = x et b = 0

Des définitions rigoureuses dès la sixième (1)

Quotient de a par b

Définition : soit a et b deux nombres tels que $b \neq 0$. On appelle quotient de a par b le nombre q par lequel il faut multiplier b pour obtenir a.

À présenter comme une opération à trou : $b \times ... = a$ (on peut, de même, présenter le nombre a - b avec l'opération à trou b + ... = a).

Doit être repris en cinquième et en quatrième pour démontrer les propriétés sur les nombres en écritures fractionnaires (addition, multiplication, inverse...).

Des définitions rigoureuses dès la sixième (2)

Division euclidienne

Définition : Soit a un nombre entier, on dit qu'un nombre b est multiple de a s'il est le produit de a par un entier.

C'est en partant de cette définition et de quelques exemples qu'on peut arriver à la division euclidienne, un théorème suivi de la définition suivante :

Définition : Soit a un nombre entier et b un nombre entier non nul. On appelle quotient et reste de la division euclidienne de a par b les nombres entiers q et r tels que : $a = b \ q + r \ \text{et} \ r < b$.

Des définitions justifiées

Le cosinus d'un angle aigu :

Théorème

Soit ABC et A'B'C' deux triangles rectangles respectivement en A et A'.

Si
$$\widehat{ABC} = \widehat{A'B'C'}$$
, alors $\frac{BA}{BC} = \frac{B'A'}{B'C'}$

Définition

Soit ABC un triangle rectangle en A.

Le **cosinus** de l'angle
$$\widehat{ABC}$$
, noté $\cos\left(\widehat{ABC}\right)$, est défini par $\cos\left(\widehat{ABC}\right) = \frac{BA}{BC}$.

On commence par démontrer le théorème, qui peut être conjecturé à l'aide d'un logiciel de géométrie, avant de donner la définition.

Des définitions mais pas pour tout

Se méfier de ce qu'on trouve dans les manuels :

Méthode 1 : Savoir utiliser le vocabulaire

À connaître

Un nombre relatif positif s'écrit avec le signe + ou sans signe.

Un nombre relatif négatif s'écrit avec le signe -.

0 est le seul nombre à la fois positif et négatif.

Deux nombres relatifs qui ne diffèrent <u>que</u> par leur signe sont opposés.

Exemple: Quel est le signe du nombre - 3,2 ? Quel est son opposé ?

Le signe de – 3,2 est –, il est négatif. Son opposé est + 3,2 que l'on écrit aussi 3,2.

Avec un tel énoncé, quel sera le signe du nombre a?

Des démonstrations indispensables

Il est indispensable de faire des démonstrations aussi bien dans le domaine numérique qu'en géométrie pour :

- donner du sens aux notions abordées ;
- structurer, renforcer les connaissances, les décloisonner;
- introduire de nouveaux outils pour démontrer;
- articuler les notions entre elles ;
- acquérir des compétences dans le domaine du raisonnement.

Des démonstrations bien choisies

Pour guider le choix des démonstrations abordées, plusieurs points sont à prendre en compte :

- elles permettent de travailler les différents types de raisonnement;
- elles ont un caractère modélisant ;
- elles s'intègrent dans la progression choisie;
- elles créent un certain équilibre entre la géométrie et le calcul;
- elles correspondent à un choix d'équipe.

Exemples

- addition de nombres en écriture fractionnaire de même dénominateur;
- centre de symétrie d'un parallélogramme ;
- sens de variation de la fonction carré ou d'une fonction affine;

•